Xhani K, Neri E, Galantucci L, Scazza F, Burchianti A, Lee K-L, Barenghi C F, Trombettoni A, Inguscio M, Zaccanti M, Roati G, Proukakis N P
Joint Quantum Centre (JQC) Durham-Newcastle, School of Mathematics, Statistics and Physics, Newcastle University, Newcastle upon Tyne NE1 7RU, United Kingdom.
European Laboratory for Non-Linear Spectroscopy (LENS), Università di Firenze, 50019 Sesto Fiorentino, Italy.
Phys Rev Lett. 2020 Jan 31;124(4):045301. doi: 10.1103/PhysRevLett.124.045301.
We study the onset of dissipation in an atomic Josephson junction between Fermi superfluids in the molecular Bose-Einstein condensation limit of strong attraction. Our simulations identify the critical population imbalance and the maximum Josephson current delimiting dissipationless and dissipative transport, in quantitative agreement with recent experiments. We unambiguously link dissipation to vortex ring nucleation and dynamics, demonstrating that quantum phase slips are responsible for the observed resistive current. Our work directly connects microscopic features with macroscopic dissipative transport, providing a comprehensive description of vortex ring dynamics in three-dimensional inhomogeneous constricted superfluids at zero and finite temperatures.
我们研究了在强吸引作用下分子玻色-爱因斯坦凝聚极限的费米超流体之间的原子约瑟夫森结中的耗散起始。我们的模拟确定了界定无耗散和耗散输运的临界粒子数不平衡和最大约瑟夫森电流,与最近的实验在定量上相符。我们明确地将耗散与涡旋环的成核和动力学联系起来,证明量子相位滑移是观测到的电阻性电流的原因。我们的工作直接将微观特征与宏观耗散输运联系起来,提供了在零温和有限温度下三维非均匀受限超流体中涡旋环动力学的全面描述。