Suppr超能文献

用于靶向胚胎气道平滑肌的 Cre 线分析。

Analysis of Cre lines for targeting embryonic airway smooth muscle.

机构信息

Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ, 08544, USA.

Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ, 08544, USA; Department of Molecular Biology, Princeton University, Princeton, NJ, 08544, USA.

出版信息

Dev Biol. 2023 Apr;496:63-72. doi: 10.1016/j.ydbio.2023.01.008. Epub 2023 Jan 25.

Abstract

During development of the embryonic mouse lung, the pulmonary mesenchyme differentiates into smooth muscle that wraps around the airway epithelium. Inhibiting smooth muscle differentiation leads to cystic airways, while enhancing it stunts epithelial branching. These findings support a conceptual model wherein the differentiation of smooth muscle sculpts the growing epithelium into branches at precise positions and with stereotyped morphologies. Unfortunately, most approaches to manipulate the differentiation of airway smooth muscle rely on pharmacological or physical perturbations that are conducted ex vivo. Here, we explored the use of diphtheria toxin-based genetic ablation strategies to eliminate airway smooth muscle in the embryonic mouse lung. Surprisingly, neither airway smooth muscle wrapping nor epithelial branching were affected in embryos in which the expression of diphtheria toxin or its receptor were driven by several different smooth muscle-specific Cre lines. Close examination of spatial patterns of Cre activity in the embryonic lung revealed that none of these commonly used Cre lines target embryonic airway smooth muscle robustly or specifically. Our findings demonstrate the need for airway smooth muscle-specific Cre lines that are active in the embryonic lung, and serve as a resource for researchers contemplating the use of these commonly used Cre lines for studying embryonic airway smooth muscle.

摘要

在胚胎期小鼠肺的发育过程中,肺间质分化为环绕气道上皮的平滑肌。抑制平滑肌分化会导致气道囊性扩张,而增强平滑肌分化则会阻碍上皮分支。这些发现支持了一个概念模型,即平滑肌的分化将生长中的上皮在精确的位置和具有刻板形态的分支中塑造出来。不幸的是,大多数操纵气道平滑肌分化的方法都依赖于体外进行的药理学或物理干扰。在这里,我们探索了使用白喉毒素为基础的基因消融策略来消除胚胎期小鼠肺中的气道平滑肌。令人惊讶的是,在表达白喉毒素或其受体的胚胎中,其驱动因子是几种不同的平滑肌特异性 Cre 线,无论是气道平滑肌的包裹还是上皮分支都没有受到影响。对胚胎肺中 Cre 活性的空间模式进行仔细检查后发现,这些常用的 Cre 线都不能有效地或特异性地靶向胚胎期气道平滑肌。我们的研究结果表明,需要使用在胚胎肺中具有活性的气道平滑肌特异性 Cre 线,这也为考虑使用这些常用的 Cre 线来研究胚胎期气道平滑肌的研究人员提供了资源。

相似文献

1
Analysis of Cre lines for targeting embryonic airway smooth muscle.
Dev Biol. 2023 Apr;496:63-72. doi: 10.1016/j.ydbio.2023.01.008. Epub 2023 Jan 25.
2
Smooth muscle differentiation shapes domain branches during mouse lung development.
Development. 2019 Nov 25;146(22):dev181172. doi: 10.1242/dev.181172.
3
Plasticity in airway smooth muscle differentiation during mouse lung development.
Dev Cell. 2023 Mar 13;58(5):338-347.e4. doi: 10.1016/j.devcel.2023.02.002. Epub 2023 Mar 2.
4
5
Abrogation of mesenchyme-specific TGF-β signaling results in lung malformation with prenatal pulmonary cysts in mice.
Am J Physiol Lung Cell Mol Physiol. 2021 Jun 1;320(6):L1158-L1168. doi: 10.1152/ajplung.00299.2020. Epub 2021 Apr 21.
10
Transmural pressure signals through retinoic acid to regulate lung branching.
Development. 2022 Jan 15;149(2). doi: 10.1242/dev.199726. Epub 2022 Jan 20.

本文引用的文献

1
Plasticity in airway smooth muscle differentiation during mouse lung development.
Dev Cell. 2023 Mar 13;58(5):338-347.e4. doi: 10.1016/j.devcel.2023.02.002. Epub 2023 Mar 2.
2
Patterning the embryonic pulmonary mesenchyme.
iScience. 2022 Jan 29;25(3):103838. doi: 10.1016/j.isci.2022.103838. eCollection 2022 Mar 18.
4
Tracing colonic embryonic transcriptional profiles and their reactivation upon intestinal damage.
Cell Rep. 2021 Aug 3;36(5):109484. doi: 10.1016/j.celrep.2021.109484.
5
The origin and mechanisms of smooth muscle cell development in vertebrates.
Development. 2021 Mar 31;148(7):dev197384. doi: 10.1242/dev.197384.
7
Smooth muscle differentiation shapes domain branches during mouse lung development.
Development. 2019 Nov 25;146(22):dev181172. doi: 10.1242/dev.181172.
8
Genetic and Mechanical Regulation of Intestinal Smooth Muscle Development.
Cell. 2019 Sep 19;179(1):90-105.e21. doi: 10.1016/j.cell.2019.08.041.
9
Comprehensive Integration of Single-Cell Data.
Cell. 2019 Jun 13;177(7):1888-1902.e21. doi: 10.1016/j.cell.2019.05.031. Epub 2019 Jun 6.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验