Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, 1206 West Gregory Drive, Urbana, IL, 61801, USA.
Swarm Intelligence and Complex Systems Group, Department of Computer Science, Leipzig University, Augustusplatz 10, 04109, Leipzig, Germany.
Sci Rep. 2023 Jan 27;13(1):1541. doi: 10.1038/s41598-022-26825-4.
Barcode-based tracking of individuals is revolutionizing animal behavior studies, but further progress hinges on whether in addition to determining an individual's location, specific behaviors can be identified and monitored. We achieve this goal using information from the barcodes to identify tightly bounded image regions that potentially show the behavior of interest. These image regions are then analyzed with convolutional neural networks to verify that the behavior occurred. When applied to a challenging test case, detecting social liquid transfer (trophallaxis) in the honey bee hive, this approach yielded a 67% higher sensitivity and an 11% lower error rate than the best detector for honey bee trophallaxis so far. We were furthermore able to automatically detect whether a bee donates or receives liquid, which previously required manual observations. By applying our trophallaxis detector to recordings from three honey bee colonies and performing simulations, we discovered that liquid exchanges among bees generate two distinct social networks with different transmission capabilities. Finally, we demonstrate that our approach generalizes to detecting other specific behaviors. We envision that its broad application will enable automatic, high-resolution behavioral studies that address a broad range of previously intractable questions in evolutionary biology, ethology, neuroscience, and molecular biology.
基于条码的个体追踪正在彻底改变动物行为研究,但进一步的进展取决于除了确定个体位置之外,是否还能识别和监测特定行为。我们通过利用条码信息来识别潜在显示感兴趣行为的紧密绑定图像区域来实现这一目标。然后,使用卷积神经网络分析这些图像区域以验证行为是否发生。当应用于具有挑战性的测试案例,即检测蜜蜂蜂巢中的社会液体转移(蜜露交换)时,与迄今为止用于检测蜜蜂蜜露交换的最佳检测器相比,该方法的灵敏度提高了 67%,错误率降低了 11%。我们还能够自动检测蜜蜂是捐赠还是接收液体,而此前这需要进行手动观察。通过将我们的蜜露交换检测器应用于三个蜜蜂群体的记录并进行模拟,我们发现蜜蜂之间的液体交换会产生两个具有不同传输能力的不同社交网络。最后,我们证明了我们的方法可以推广到检测其他特定行为。我们设想它的广泛应用将能够实现自动、高分辨率的行为研究,解决进化生物学、行为学、神经科学和分子生物学中以前难以解决的广泛问题。