School of Physics and Electronics, Hunan Key Laboratory for Super-microstructure and Ultrafast Process, Central South University, 932 South Lushan Road, Changsha, Hunan, 410083, P. R. China.
Department of Physics and Astronomy, California State University Northridge, California, CA, 91330-8268, USA.
Adv Mater. 2023 Apr;35(16):e2210909. doi: 10.1002/adma.202210909. Epub 2023 Mar 10.
Moiré superlattices in twisted van der Waals materials offer a powerful platform for exploring light-matter interactions. The periodic moiré potentials in moiré superlattices can induce strongly correlated quantum phenomena that depend on the moiré potential associated with interlayer coupling at the interface. However, moiré superlattices are primarily prepared by mechanical exfoliation and manual stacking, where the transfer methods easily cause interfacial contamination, and the preparation of high-quality bilayer 2D materials with small twist angles by growth methods remains a significant challenge. In this work, WSe /WSe homobilayers with different twist angles by chemical vapor deposition (CVD), using a heteroatom-assisted growth technique, are synthesized. Using low-frequency Raman scattering, the uniformity of the moiré superlattices is mapped to demonstrate the strong interfacial coupling of the CVD-fabricated twist-angle homobilayers. The moiré potential depths of the CVD-grown and artificially stacked homostructures with twist angles of 1.5° are 115 and 45 meV (an increase of 155%), indicating that the depth of moiré potential can be modulated by the interfacial coupling. These results open a new avenue to study the modulation of moiré potential by strong interlayer coupling and provide a foundation for the development of twistronics.
扭曲范德华材料中的莫尔超晶格为探索光物质相互作用提供了一个强大的平台。莫尔超晶格中的周期性莫尔势可以诱导强烈的关联量子现象,这些现象取决于与界面处层间耦合相关的莫尔势。然而,莫尔超晶格主要通过机械剥离和手动堆叠制备,其中转移方法容易导致界面污染,而通过生长方法制备具有小扭转角的高质量双层 2D 材料仍然是一个重大挑战。在这项工作中,使用杂原子辅助生长技术,通过化学气相沉积(CVD)合成了具有不同扭转角的 WSe/WSe 同层异质结。通过低频 Raman 散射,对莫尔超晶格的均匀性进行了映射,证明了 CVD 制备的扭转角同层异质结具有很强的界面耦合。扭转角为 1.5°的 CVD 生长和人工堆叠同结构的莫尔势深度分别为 115 和 45 meV(增加了 155%),表明莫尔势的深度可以通过界面耦合进行调制。这些结果为研究强层间耦合对莫尔势的调制开辟了新途径,并为扭转电子学的发展提供了基础。