Yuan Yuanjian, Liu Peng, Wu Hongjian, Chen Haitao, Zheng Weihao, Peng Gang, Zhu Zhihong, Zhu Mengjian, Dai Jiayu, Qin Shiqiao, Novoselov Kostya S
College of Science & Hunan Key Laboratory of Extreme Matter and Applications, National University of Defense Technology, Changsha, Hunan 410073, China.
College of Advanced Interdisciplinary Studies & Hunan Provincial Key Laboratory of Novel Nano-optoelectronic Information Materials and Devices, National University of Defense Technology, Changsha, Hunan 410073, China.
ACS Nano. 2023 Sep 26;17(18):17897-17907. doi: 10.1021/acsnano.3c03795. Epub 2023 Sep 12.
Interlayer coupling plays a critical role in the electronic band structures and optoelectronic properties of van der Waals (vdW) materials and heterostructures. Here, we utilize optical second-harmonic generation (SHG) measurements to probe the twist-controlled interlayer coupling in artificially stacked WSe/WSe homobilayers and WSe/WS and WSe/MoS heterobilayers with a postannealing procedure. In the large angle twisted WSe/WSe and WSe/WS, the angular dependence of the SHG intensity follows the interference relations up to angles above 10°. For lower angles, the SHG is significantly suppressed. Furthermore, for the twisted WSe/MoS the SHG intensity largely deviates from the coherent superposition model and shows consistent quenching for all the stacking angles. The suppressed SHG in twisted transition metal dichalcogenide (TMDC) bilayers is predominantly attributed to the interlayer coupling between the two adjacent monolayers. The evolution of the interlayer Raman mode in WSe demonstrates that the interlayer coupling in the twisted WSe/WSe and WSe/WS is highly angle-dependent. Alternatively, the interlayer coupling generally exists in the twisted WSe/MoS, regardless of the different angles. The interlayer coupling is further confirmed by the quenching and red-shift of the photoluminescence of WSe in the twisted TMDC bilayers. Combined with density functional theory calculations, we reveal that the stacking-angle-modulated interlayer coupling originates from the variation of the interlayer spacing and the binding energy in the twisted TMDC bilayers.
层间耦合在范德华(vdW)材料及异质结构的电子能带结构和光电特性中起着关键作用。在此,我们利用光学二次谐波产生(SHG)测量,通过后退火程序来探测人工堆叠的WSe/WSe同质双层以及WSe/WS和WSe/MoS异质双层中扭转控制的层间耦合。在大角度扭转的WSe/WSe和WSe/WS中,SHG强度的角度依赖性在高达10°以上的角度时遵循干涉关系。对于较小角度,SHG被显著抑制。此外,对于扭转的WSe/MoS,SHG强度在很大程度上偏离了相干叠加模型,并且在所有堆叠角度下都呈现出一致的猝灭。扭转的过渡金属二卤化物(TMDC)双层中SHG的抑制主要归因于两个相邻单层之间的层间耦合。WSe中层间拉曼模式的演变表明,扭转的WSe/WSe和WSe/WS中的层间耦合高度依赖于角度。或者,无论角度如何,扭转的WSe/MoS中通常都存在层间耦合。扭转的TMDC双层中WSe光致发光的猝灭和红移进一步证实了层间耦合。结合密度泛函理论计算,我们揭示了堆叠角调制的层间耦合源于扭转的TMDC双层中层间距和结合能的变化。