Suppr超能文献

在非比例风险下,对时依事件数据进行非劣效性或等效性研究。

Investigating non-inferiority or equivalence in time-to-event data under non-proportional hazards.

机构信息

Mathematical Institute, Heinrich Heine University, 40225, Düsseldorf, Germany.

Institute of Medical Statistics and Computational Biology, Faculty of Medicine, University of Cologne, Cologne, Germany.

出版信息

Lifetime Data Anal. 2023 Jul;29(3):483-507. doi: 10.1007/s10985-023-09589-5. Epub 2023 Jan 28.

Abstract

The classical approach to analyze time-to-event data, e.g. in clinical trials, is to fit Kaplan-Meier curves yielding the treatment effect as the hazard ratio between treatment groups. Afterwards, a log-rank test is commonly performed to investigate whether there is a difference in survival or, depending on additional covariates, a Cox proportional hazard model is used. However, in numerous trials these approaches fail due to the presence of non-proportional hazards, resulting in difficulties of interpreting the hazard ratio and a loss of power. When considering equivalence or non-inferiority trials, the commonly performed log-rank based tests are similarly affected by a violation of this assumption. Here we propose a parametric framework to assess equivalence or non-inferiority for survival data. We derive pointwise confidence bands for both, the hazard ratio and the difference of the survival curves. Further we propose a test procedure addressing non-inferiority and equivalence by directly comparing the survival functions at certain time points or over an entire range of time. Once the model's suitability is proven the method provides a noticeable power benefit, irrespectively of the shape of the hazard ratio. On the other hand, model selection should be carried out carefully as misspecification may cause type I error inflation in some situations. We investigate the robustness and demonstrate the advantages and disadvantages of the proposed methods by means of a simulation study. Finally, we demonstrate the validity of the methods by a clinical trial example.

摘要

分析事件时间数据(例如临床试验中的数据)的经典方法是拟合 Kaplan-Meier 曲线,得出治疗组之间的治疗效果作为风险比。之后,通常会进行对数秩检验,以研究生存是否存在差异,或者根据其他协变量,使用 Cox 比例风险模型。然而,在许多试验中,由于存在非比例风险,这些方法会失败,导致难以解释风险比和丧失效力。在考虑等效性或非劣效性试验时,通常进行的基于对数秩的检验也会受到违反该假设的影响。在这里,我们提出了一种参数框架来评估生存数据的等效性或非劣效性。我们为风险比和生存曲线差异导出了点估计置信带。此外,我们提出了一种测试程序,通过直接比较某些时间点或整个时间范围内的生存函数来处理非劣效性和等效性。一旦证明了模型的适用性,该方法在不考虑风险比形状的情况下提供了显著的效力优势。另一方面,由于模型选择不当可能会导致某些情况下的 I 型错误膨胀,因此应谨慎进行。我们通过模拟研究调查了方法的稳健性,并展示了所提出方法的优缺点。最后,我们通过临床试验示例证明了方法的有效性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/290e/10258187/3d7c3eb43691/10985_2023_9589_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验