Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, Shandong Key Laboratory of Biochemical Analysis, College of Chemistry and Molecular Engineering, Qingdao University of Science & Technology, Qingdao, 266042, China.
Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, Shandong Key Laboratory of Biochemical Analysis, College of Chemistry and Molecular Engineering, Qingdao University of Science & Technology, Qingdao, 266042, China.
Biosens Bioelectron. 2023 Apr 1;225:115101. doi: 10.1016/j.bios.2023.115101. Epub 2023 Jan 24.
The electrochemical biosensor with outstanding sensitivity and low cost is regarded as a viable alternative to current clinical diagnostic techniques for various disease biomarkers. However, their actual analytical use in complex biological samples is severely hampered due to the biofouling, as they are also highly sensitive to nonspecific adsorption on the sensing interfaces. Herein, we have constructed a non-fouling electrochemical biosensor based on antifouling peptides and the electroneutral peptide nucleic acid (PNA), which was used as the recognizing probe for the specific binding of the viral RNA of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Different from the negatively charged DNA probes that will normally weaken the biosensors' antifouling capabilities owing to the charge attraction of positively charged biomolecules, the neutral PNA probe will generate no side-effects on the biosensor. The biosensor demonstrated remarkable sensitivity in detecting SARS-CoV-2 viral RNA, possessing a broad linear range (1.0 fM - 1.0 nM) and a detection limit down to 0.38 fM. Furthermore, the sensing performance of the constructed electrochemical biosensor in human saliva was nearly similar to that in pure buffer, indicating satisfying antifouling capability. The combination of PNA probes with antifouling peptides offered a new strategy for the development of non-fouling sensing systems capable of assaying trace disease biomarkers in complicated biological media.
基于具有出色灵敏度和低成本的电化学生物传感器,被认为是当前用于各种疾病生物标志物的临床诊断技术的可行替代品。然而,由于生物污垢,它们对传感界面上的非特异性吸附也非常敏感,因此它们在复杂生物样品中的实际分析应用受到严重阻碍。在此,我们构建了一种基于抗污染肽和电中性肽核酸(PNA)的非污染电化学生物传感器,该传感器被用作识别探针,用于特异性结合严重急性呼吸综合征冠状病毒 2(SARS-CoV-2)的病毒 RNA。与通常会由于带正电荷的生物分子的电荷吸引而削弱生物传感器抗污染能力的带负电荷的 DNA 探针不同,中性 PNA 探针不会对生物传感器产生任何副作用。该生物传感器在检测 SARS-CoV-2 病毒 RNA 时表现出出色的灵敏度,具有较宽的线性范围(1.0 fM - 1.0 nM)和低至 0.38 fM 的检测限。此外,构建的电化学生物传感器在人唾液中的传感性能与在纯缓冲液中的性能几乎相似,表明具有令人满意的抗污染能力。PNA 探针与抗污染肽的结合为开发能够在复杂生物介质中检测痕量疾病生物标志物的非污染传感系统提供了一种新策略。