Suppr超能文献

DeepSelectNet:基于深度神经网络的牛津纳米孔测序选择性测序。

DeepSelectNet: deep neural network based selective sequencing for oxford nanopore sequencing.

机构信息

Department of Computer Engineering, University of Peradeniya, Peradeniya, Sri Lanka.

Kinghorn Centre for Clinical Genomics, Garvan Institute of Medical Research, Darlinghurst, Australia.

出版信息

BMC Bioinformatics. 2023 Jan 28;24(1):31. doi: 10.1186/s12859-023-05151-0.

Abstract

BACKGROUND

Nanopore sequencing allows selective sequencing, the ability to programmatically reject unwanted reads in a sample. Selective sequencing has many present and future applications in genomics research and the classification of species from a pool of species is an example. Existing methods for selective sequencing for species classification are still immature and the accuracy highly varies depending on the datasets. For the five datasets we tested, the accuracy of existing methods varied in the range of [Formula: see text] 77 to 97% (average accuracy < 89%). Here we present DeepSelectNet, an accurate deep-learning-based method that can directly classify nanopore current signals belonging to a particular species. DeepSelectNet utilizes novel data preprocessing techniques and improved neural network architecture for regularization.

RESULTS

For the five datasets tested, DeepSelectNet's accuracy varied between [Formula: see text] 91 and 99% (average accuracy [Formula: see text] 95%). At its best performance, DeepSelectNet achieved a nearly 12% accuracy increase compared to its deep learning-based predecessor SquiggleNet. Furthermore, precision and recall evaluated for DeepSelectNet on average were always > 89% (average [Formula: see text] 95%). In terms of execution performance, DeepSelectNet outperformed SquiggleNet by [Formula: see text] 13% on average. Thus, DeepSelectNet is a practically viable method to improve the effectiveness of selective sequencing.

CONCLUSIONS

Compared to base alignment and deep learning predecessors, DeepSelectNet can significantly improve the accuracy to enable real-time species classification using selective sequencing. The source code of DeepSelectNet is available at https://github.com/AnjanaSenanayake/DeepSelectNet .

摘要

背景

纳米孔测序允许进行选择性测序,即能够有针对性地拒绝样品中不需要的读取。选择性测序在基因组学研究和物种分类中有许多现在和未来的应用,从物种池中对物种进行分类就是一个例子。目前用于物种分类的选择性测序方法仍不成熟,其准确性高度依赖于数据集。对于我们测试的五个数据集,现有方法的准确性在 [Formula: see text] 77%至 97%(平均准确率 < 89%)之间变化。在这里,我们提出了 DeepSelectNet,这是一种基于深度学习的准确方法,可直接对属于特定物种的纳米孔电流信号进行分类。DeepSelectNet 利用新颖的数据预处理技术和改进的神经网络架构进行正则化。

结果

对于测试的五个数据集,DeepSelectNet 的准确率在 [Formula: see text] 91%至 99%(平均准确率为 [Formula: see text] 95%)之间变化。在最佳性能下,DeepSelectNet 与基于深度学习的前身 SquiggleNet 相比,准确率提高了近 12%。此外,对 DeepSelectNet 的平均精度和召回率评估始终> 89%(平均为 [Formula: see text] 95%)。在执行性能方面,DeepSelectNet 的平均性能优于 SquiggleNet 13%。因此,DeepSelectNet 是一种提高选择性测序有效性的实用方法。

结论

与基本对齐和深度学习的前身相比,DeepSelectNet 可以显著提高准确性,从而实现使用选择性测序进行实时物种分类。DeepSelectNet 的源代码可在 https://github.com/AnjanaSenanayake/DeepSelectNet 上获得。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f24f/9883974/9af14412e78f/12859_2023_5151_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验