Functional Materials and Energy Devices Laboratory, Department of Physics and Nanotechnology, SRM Institute of Science and Technology, Kattankulathur 603203, India.
Functional Materials and Energy Devices Laboratory, Department of Physics and Nanotechnology, SRM Institute of Science and Technology, Kattankulathur 603203, India; Graduate School of Science and Technology, Shizuoka University, 3-5-1 Johoku, Naka-Ku, Hamamatsu, Shizuoka 432-8011, Japan.
J Colloid Interface Sci. 2023 May;637:340-353. doi: 10.1016/j.jcis.2023.01.042. Epub 2023 Jan 11.
Bismuth Selenide is a Tellurium free topological insulator in V-VI compounds with an excellent thermoelectric performance from room temperature to mid-temperature region. Herein, hydrothermally prepared polycrystalline BiAgSe nanostructures have been reported for thermoelectric application. The crystal structure identification and morphology with the elemental presence were analyzed by XRD (X-ray diffraction), HR-SEM with EDS (High resolution scanning electron microscope with energy dispersive X-ray), and HR-TEM (High-resolution transmission electron microscope) measurements. The reduced lattice thermal conductivity and enhanced electrical transport properties synergistically boost the thermoelectric properties through the highly-dense stacking faults with the presence of dislocations. The IFFT (Inverse Fast Fourier Transform) pattern reveals the existence of stacking faults and dislocations. These highly dense stacking faults and dislocations act as active phonon scattering centers, which can contribute to effective phonon scattering resultsin extremely low lattice thermal conduction of 0.3 W/mK at 543 K. On the other hand, the involvement of phonon-phonon scattering primarily reduced the lattice thermal conductivity at elevated temperatures. In addition, phonon-carrier scattering was less compared to phonon-phonon scattering at elevated temperature region. Moreover, the enhancement of electrical conductivity and controlled reduction of the Seebeck coefficient plays a vital role in achieving the maximum power factor of 335 μW/mK at 543 K due to the energy filtering effect. The synergistic combination of low thermal conduction and the maximum power factor helps to achieve the high peak zT of 0.3 at 543 K.
碲化铋是 V-VI 族化合物中的一种无碲拓扑绝缘体,具有从室温到中温区域的优异热电性能。在此,报道了水热法制备的多晶 BiAgSe 纳米结构在热电应用方面的研究。通过 XRD(X 射线衍射)、HR-SEM 与 EDS(高分辨率扫描电子显微镜与能量色散 X 射线)和 HR-TEM(高分辨率透射电子显微镜)测量对晶体结构鉴定和形态以及元素存在进行了分析。通过存在位错的高密度堆叠层错,协同降低晶格热导率并提高电输运性能,从而提高热电性能。IFFT(逆快速傅里叶变换)模式揭示了堆叠层错和位错的存在。这些高密度的堆叠层错和位错充当活跃的声子散射中心,这有助于在 543K 时实现极低的晶格热导率 0.3 W/mK 的有效声子散射。另一方面,在高温下,声子-声子散射主要降低了晶格热导率。此外,与高温区域的声子-声子散射相比,声子-载流子散射较少。此外,由于能量过滤效应,电导率的增强和塞贝克系数的控制降低在 543K 时实现了最大功率因子 335μW/mK 方面发挥了重要作用。低导热率和最大功率因子的协同组合有助于在 543K 时实现高达 0.3 的高峰值 zT。