Department of Physics, Ben Gurion University, P.O. Box 653, Beer Sheva 84105, Israel.
Department of Physics, Ben Gurion University, P.O. Box 653, Beer Sheva 84105, Israel.
J Magn Reson. 2023 Mar;348:107377. doi: 10.1016/j.jmr.2023.107377. Epub 2023 Jan 18.
Electron Spin Resonance-Scanning Tunneling Microscopy (ESR-STM) of C radical ion on graphene is a first demonstration of ESR-STM on diamagnetic molecules. ESR-STM signal at g=2.0±0.1 was measured in accordance with macroscopic ESR of C radical ion. The ESR-STM signal was bias voltage dependent, as it reflects the charge state of the molecule. The signal appears in the bias voltage which enables the ionization of the lowest unoccupied molecular orbital (LUMO) - creation of radical anion, and the highest occupied molecular orbital (HOMO) - creation of a radical cation of the C molecule when it deposited on graphene. In parallel, ESR-STM signal at g=1.7±0.1 was ascribed to Tungsten oxide (WO) at the tip apex. In several experiments, triplet spectrum was observed, and we ascribed their origin to zero-field splitting of doubly ionized CO dimer, as argued in previous ESR experiments of C samples. Second possibility is hyperfine coupling with two C nuclei. In addition, we further validate the interference mechanism previously suggested for ESR-STM noise spectroscopy. The ability of ESR-STM to observe ESR of diamagnetic molecules in parallel with observing their electronic structure, provides a general single molecule identification technique.
电子自旋共振扫描隧道显微镜(ESR-STM)对石墨烯上 C 自由基离子的研究是首次对反磁性分子进行 ESR-STM 研究的证明。按照 C 自由基离子的宏观 ESR 测量,我们测量到了 g=2.0±0.1 的 ESR-STM 信号。ESR-STM 信号与偏置电压有关,因为它反映了分子的电荷状态。当 C 分子沉积在石墨烯上时,信号出现在能够使最低未占据分子轨道(LUMO)电离——产生自由基阴离子,以及最高占据分子轨道(HOMO)——产生自由基阳离子的偏置电压下。同时,g=1.7±0.1 的 ESR-STM 信号归因于尖端的氧化钨(WO)。在几次实验中,我们观察到了三重态光谱,并将其归因于 CO 二聚体的双离子化的零场分裂,正如之前 C 样品的 ESR 实验所论证的那样。第二种可能性是与两个 C 核的超精细耦合。此外,我们进一步验证了之前提出的用于 ESR-STM 噪声光谱学的干涉机制。ESR-STM 能够平行观察反磁性分子的 ESR 并同时观察其电子结构,这为一般的单分子识别技术提供了可能。