Farinacci Laëtitia, Veldman Lukas M, Willke Philip, Otte Sander
Department of Quantum Nanoscience, Kavli Institute of Nanoscience, Delft University of Technology, 2628 CJDelft, The Netherlands.
Physikalisches Institut, Karlsruhe Institute of Technology, 76131Karlsruhe, Germany.
Nano Lett. 2022 Nov 9;22(21):8470-8474. doi: 10.1021/acs.nanolett.2c02783. Epub 2022 Oct 28.
Historically, electron spin resonance (ESR) has provided excellent insight into the electronic, magnetic, and chemical structure of samples hosting spin centers. In particular, the hyperfine interaction between the electron and the nuclear spins yields valuable structural information about these centers. In recent years, the combination of ESR and scanning tunneling microscopy (ESR-STM) has allowed to acquire such information about individual spin centers of magnetic atoms bound atop a surface, while additionally providing spatial information about the binding site. Here, we conduct a full angle-dependent investigation of the hyperfine splitting for individual hydrogenated titanium atoms on MgO/Ag(001) by measurements in a vector magnetic field. We observe strong anisotropy in both the factor and the hyperfine tensor. Combining the results of the hyperfine splitting with the symmetry properties of the binding site obtained from STM images and a basic point charge model allows us to predict the shape of the electronic ground state configuration of the titanium atom. Relying on experimental values only, this method paves the way for a new protocol for electronic structure analysis for spin centers on surfaces.
从历史上看,电子自旋共振(ESR)为研究含有自旋中心的样品的电子、磁性和化学结构提供了很好的视角。特别是,电子与核自旋之间的超精细相互作用产生了有关这些中心的有价值的结构信息。近年来,ESR与扫描隧道显微镜(ESR-STM)的结合使得获取关于结合在表面上的磁性原子的单个自旋中心的此类信息成为可能,同时还提供了有关结合位点的空间信息。在这里,我们通过在矢量磁场中的测量,对MgO/Ag(001)上的单个氢化钛原子的超精细分裂进行了全角度相关研究。我们在 因子和超精细张量中都观察到了很强的各向异性。将超精细分裂的结果与从STM图像获得的结合位点的对称性以及基本点电荷模型相结合,使我们能够预测钛原子的电子基态构型的形状。仅依靠实验值,该方法为表面自旋中心的电子结构分析开辟了一条新途径。