Willke Philip, Singha Aparajita, Zhang Xue, Esat Taner, Lutz Christopher P, Heinrich Andreas J, Choi Taeyoung
Center for Quantum Nanoscience , Institute for Basic Science (IBS) , Seoul 03760 , Republic of Korea.
Ewha Womans University , Seoul 03760 , Republic of Korea.
Nano Lett. 2019 Nov 13;19(11):8201-8206. doi: 10.1021/acs.nanolett.9b03559. Epub 2019 Nov 4.
Spin resonance of single spin centers bears great potential for chemical structure analysis, quantum sensing, and quantum coherent manipulation. Essential for these experiments is the presence of a two-level spin system whose energy splitting can be chosen by applying a magnetic field. In recent years, a combination of electron spin resonance (ESR) and scanning tunneling microscopy (STM) has been demonstrated as a technique to detect magnetic properties of single atoms on surfaces and to achieve sub-microelectronvolts energy resolution. Nevertheless, up to now the role of the required magnetic fields has not been elucidated. Here, we perform single-atom ESR on individual Fe atoms adsorbed on magnesium oxide (MgO) using a two-dimensional vector magnetic field as well as the local field of the magnetic STM tip in a commercially available STM. We show how the ESR amplitude can be greatly improved by optimizing the magnetic fields, revealing in particular an enhanced signal at large in-plane magnetic fields. Moreover, we demonstrate that the stray field from the magnetic STM tip is a versatile tool. We use it here to drive the electron spin more efficiently and to perform ESR measurements at constant frequency by employing tip-field sweeps. Lastly, we show that it is possible to perform ESR using only the tip field, under zero external magnetic field, which promises to make this technique available in many existing STM systems.
单自旋中心的自旋共振在化学结构分析、量子传感和量子相干操纵方面具有巨大潜力。这些实验的关键是存在一个两能级自旋系统,其能量分裂可以通过施加磁场来选择。近年来,电子自旋共振(ESR)和扫描隧道显微镜(STM)的结合已被证明是一种检测表面单个原子磁性特性并实现亚微电子伏特能量分辨率的技术。然而,到目前为止,所需磁场的作用尚未阐明。在这里,我们在市售STM中使用二维矢量磁场以及磁性STM尖端的局部场,对吸附在氧化镁(MgO)上的单个铁原子进行单原子ESR。我们展示了如何通过优化磁场来大幅提高ESR振幅,特别是在大的面内磁场中显示出增强的信号。此外,我们证明了来自磁性STM尖端的杂散场是一种多功能工具。我们在此使用它来更有效地驱动电子自旋,并通过采用尖端场扫描在恒定频率下进行ESR测量。最后,我们表明在零外部磁场下仅使用尖端场就可以进行ESR,这有望使该技术在许多现有的STM系统中可用。