Suppr超能文献

基于数字同轴全息术的原位生物颗粒分析仪。

In situ biological particle analyzer based on digital inline holography.

作者信息

Sanborn Delaney, He Ruichen, Feng Lei, Hong Jiarong

机构信息

Department of Mechanical Engineering, University of Minnesota, Minneapolis, Minnesota, USA.

Saint Anthony Falls Laboratory, University of Minnesota, Minneapolis, Minnesota, USA.

出版信息

Biotechnol Bioeng. 2023 May;120(5):1399-1410. doi: 10.1002/bit.28338. Epub 2023 Feb 13.

Abstract

Obtaining in situ measurements of biological microparticles is crucial for both scientific research and numerous industrial applications (e.g., early detection of harmful algal blooms, monitoring yeast during fermentation). However, existing methods are limited to offer timely diagnostics of these particles with sufficient accuracy and information. Here, we introduce a novel method for real-time, in situ analysis using machine learning (ML)-assisted digital inline holography (DIH). Our ML model uses a customized YOLOv5 architecture specialized for the detection and classification of small biological particles. We demonstrate the effectiveness of our method in the analysis of 10 plankton species with equivalent high accuracy and significantly reduced processing time compared to previous methods. We also applied our method to differentiate yeast cells under four metabolic states and from two strains. Our results show that the proposed method can accurately detect and differentiate cellular and subcellular features related to metabolic states and strains. This study demonstrates the potential of ML-driven DIH approach as a sensitive and versatile diagnostic tool for real-time, in situ analysis of both biotic and abiotic particles. This method can be readily deployed in a distributive manner for scientific research and manufacturing on an industrial scale.

摘要

获取生物微粒的原位测量数据对于科学研究和众多工业应用(例如,有害藻华的早期检测、发酵过程中酵母的监测)都至关重要。然而,现有方法在以足够的准确性和信息量及时诊断这些微粒方面存在局限性。在此,我们介绍一种使用机器学习(ML)辅助数字全息干涉术(DIH)进行实时原位分析的新方法。我们的ML模型使用了专门针对小型生物微粒检测和分类定制的YOLOv5架构。我们证明了我们的方法在分析10种浮游生物物种时的有效性,与先前方法相比,具有同等的高精度且显著缩短了处理时间。我们还将我们的方法应用于区分处于四种代谢状态和来自两个菌株的酵母细胞。我们的结果表明,所提出的方法能够准确检测和区分与代谢状态和菌株相关的细胞及亚细胞特征。本研究证明了ML驱动的DIH方法作为一种用于生物和非生物微粒实时原位分析的灵敏且通用的诊断工具的潜力。这种方法可以很容易地以分布式方式部署,用于工业规模的科学研究和制造。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验