Suppr超能文献

用于脑电和眼动追踪数据的跨主题阅读任务分类的ZuCo基准测试。

The ZuCo benchmark on cross-subject reading task classification with EEG and eye-tracking data.

作者信息

Hollenstein Nora, Tröndle Marius, Plomecka Martyna, Kiegeland Samuel, Özyurt Yilmazcan, Jäger Lena A, Langer Nicolas

机构信息

Center for Language Technology, University of Copenhagen, Copenhagen, Denmark.

Department of Psychology, University of Zurich, Zurich, Switzerland.

出版信息

Front Psychol. 2023 Jan 12;13:1028824. doi: 10.3389/fpsyg.2022.1028824. eCollection 2022.

Abstract

We present a new machine learning benchmark for reading task classification with the goal of advancing EEG and eye-tracking research at the intersection between computational language processing and cognitive neuroscience. The benchmark task consists of a cross-subject classification to distinguish between two reading paradigms: normal reading and task-specific reading. The data for the benchmark is based on the Zurich Cognitive Language Processing Corpus (ZuCo 2.0), which provides simultaneous eye-tracking and EEG signals from natural reading of English sentences. The training dataset is publicly available, and we present a newly recorded hidden testset. We provide multiple solid baseline methods for this task and discuss future improvements. We release our code and provide an easy-to-use interface to evaluate new approaches with an accompanying public leaderboard: www.zuco-benchmark.com.

摘要

我们提出了一种用于阅读任务分类的新机器学习基准,目标是推动计算语言处理与认知神经科学交叉领域的脑电图(EEG)和眼动追踪研究。该基准任务包括一个跨主体分类,以区分两种阅读范式:正常阅读和特定任务阅读。该基准的数据基于苏黎世认知语言处理语料库(ZuCo 2.0),它提供了来自英语句子自然阅读的同步眼动追踪和EEG信号。训练数据集是公开可用的,并且我们展示了一个新记录的隐藏测试集。我们为该任务提供了多种可靠的基线方法,并讨论了未来的改进方向。我们发布了代码,并提供了一个易于使用的界面,通过随附的公共排行榜(www.zuco-benchmark.com)来评估新方法。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/68f0/9878684/b500044cd3bb/fpsyg-13-1028824-g0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验