Biomedical Engineering, University of Virginia, Charlottesville, VA, United States of America.
Biomolecular Sciences Institute and Department of Biology, Florida International University, Miami, FL, United States of America.
PeerJ. 2023 Jan 23;11:e14713. doi: 10.7717/peerj.14713. eCollection 2023.
Cellular fates are determined by genes interacting across large, complex biological networks. A critical question is how to identify causal relationships spanning distinct signaling pathways and underlying organismal phenotypes. Here, we address this question by constructing a Boolean model of a well-studied developmental network and analyzing information flows through the system. Depending on environmental signals develop normally to sexual maturity or enter a reproductively delayed, developmentally quiescent 'dauer' state, progressing to maturity when the environment changes. The developmental network that starts with environmental signal and ends in the dauer/no dauer fate involves genes across 4 signaling pathways including cyclic GMP, Insulin/IGF-1, TGF- and steroid hormone synthesis. We identified three stable motifs leading to normal development, each composed of genes interacting across the Insulin/IGF-1, TGF- and steroid hormone synthesis pathways. Three genes known to influence dauer fate, , and , acted as driver nodes in the system. Using causal logic analysis, we identified a five gene cyclic subgraph integrating the information flow from environmental signal to dauer fate. Perturbation analysis showed that a multifactorial insulin profile determined the stable motifs the system entered and interacted with as the switchpoint driving the dauer/no dauer fate. Our results show that complex organismal systems can be distilled into abstract representations that permit full characterization of the causal relationships driving developmental fates. Analyzing organismal systems from this perspective of logic and function has important implications for studies examining the evolution and conservation of signaling pathways.
细胞命运是由相互作用的基因在大型复杂生物网络中决定的。一个关键问题是如何识别跨越不同信号通路和潜在生物体表型的因果关系。在这里,我们通过构建一个经过充分研究的发育网络的布尔模型并分析系统中的信息流来解决这个问题。根据环境信号,线虫要么正常发育到性成熟,要么进入生殖延迟、发育静止的“ dauer”状态,当环境变化时会发育成熟。从环境信号开始,最终决定 dauer/no dauer 命运的发育网络涉及跨越 4 个信号通路的基因,包括环鸟苷酸、胰岛素/IGF-1、TGF-β和类固醇激素合成。我们鉴定了三个导致正常发育的稳定基序,每个基序都由跨胰岛素/IGF-1、TGF-β和类固醇激素合成通路相互作用的基因组成。三个已知影响 dauer 命运的基因、、和作为系统中的驱动节点。使用因果逻辑分析,我们鉴定了一个整合从环境信号到 dauer 命运信息流的五基因环状子图。扰动分析表明,多种胰岛素模式决定了系统进入的稳定基序,并与作为驱动 dauer/no dauer 命运的开关点的相互作用。我们的结果表明,复杂的生物体系统可以被提炼成抽象的表示形式,从而可以全面描述驱动发育命运的因果关系。从逻辑和功能的角度分析生物体系统对于研究信号通路的进化和保守性具有重要意义。