Sevrin Thomas, Strasser Lisa, Ternet Camille, Junk Philipp, Caffarini Miriam, Prins Stella, D'Arcy Cian, Catozzi Simona, Oliviero Giorgio, Wynne Kieran, Kiel Christina, Luthert Philip J
Systems Biology Ireland, School of Medicine, University College Dublin, Belfield Dublin 4, Ireland.
UCD Charles Institute of Dermatology, School of Medicine, University College Dublin, Belfield Dublin 4, Ireland.
iScience. 2023 Jan 5;26(2):105931. doi: 10.1016/j.isci.2023.105931. eCollection 2023 Feb 17.
Cellular utilization of available energy flows to drive a multitude of forms of cellular "work" is a major biological constraint. Cells steer metabolism to address changing phenotypic states but little is known as to how bioenergetics couples to the richness of processes in a cell as a whole. Here, we outline a whole-cell energy framework that is informed by proteomic analysis and an energetics-based gene ontology. We separate analysis of metabolic supply and the capacity to generate high-energy phosphates from a representation of demand that is built on the relative abundance of ATPases and GTPases that deliver cellular work. We employed mouse embryonic fibroblast cell lines that express wild-type KRAS or oncogenic mutations and with distinct phenotypes. We observe shifts between energy-requiring processes. Calibrating against Seahorse analysis, we have created a whole-cell energy budget with apparent predictive power, for instance in relation to protein synthesis.
细胞利用可用能量流来驱动多种形式的细胞“工作”是一个主要的生物学限制因素。细胞引导新陈代谢以应对不断变化的表型状态,但对于生物能量学如何与整个细胞中丰富的过程耦合却知之甚少。在这里,我们概述了一个基于蛋白质组分析和基于能量学的基因本体论的全细胞能量框架。我们将代谢供应分析以及从基于提供细胞工作的ATP酶和GTP酶的相对丰度构建的需求表示中产生高能磷酸盐的能力区分开来。我们使用了表达野生型KRAS或致癌突变且具有不同表型的小鼠胚胎成纤维细胞系。我们观察到能量需求过程之间的转变。通过与海马分析校准,我们创建了一个具有明显预测能力的全细胞能量预算,例如与蛋白质合成相关。