Larsson Ida, Uhlén Mathias, Zhang Cheng, Mardinoglu Adil
Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden.
Science for Life Laboratory, KTH - Royal Institute of Technology, Stockholm, Sweden.
Front Genet. 2020 Apr 17;11:381. doi: 10.3389/fgene.2020.00381. eCollection 2020.
Glioblastoma (GBM) is an aggressive type of brain cancer with a poor prognosis for affected patients. The current line of treatment only gives the patients a survival time of on average 15 months. In this work, we use genome-scale metabolic models (GEMs) together with other systems biology tools to examine the global transcriptomics-data of GBM-patients obtained from The Cancer Genome Atlas (TCGA). We reveal the molecular mechanisms underlying GBM and identify potential therapeutic targets for effective treatment of patients. The work presented consists of two main parts. The first part stratifies the patients into two groups, high and low survival, and compares their gene expression. The second part uses GBM and healthy brain tissue GEMs to simulate gene knockout in a GBM cell model to find potential therapeutic targets and predict their side effect in healthy brain tissue. We (1) find that genes upregulated in the patients with low survival are linked to various stages of the glioma invasion process, and (2) identify five essential genes for GBM, whose inhibition is non-toxic to healthy brain tissue, therefore promising to investigate further as therapeutic targets.
胶质母细胞瘤(GBM)是一种侵袭性脑癌,对患者的预后很差。目前的治疗方案只能使患者的平均存活时间达到15个月。在这项工作中,我们使用基因组规模代谢模型(GEMs)以及其他系统生物学工具来研究从癌症基因组图谱(TCGA)获得的GBM患者的全球转录组学数据。我们揭示了GBM潜在的分子机制,并确定了有效治疗患者的潜在治疗靶点。所展示的工作主要由两个部分组成。第一部分将患者分为高生存期和低生存期两组,并比较他们的基因表达。第二部分使用GBM和健康脑组织的GEMs在GBM细胞模型中模拟基因敲除,以找到潜在的治疗靶点,并预测它们在健康脑组织中的副作用。我们(1)发现低生存期患者中上调的基因与胶质瘤侵袭过程的各个阶段相关,并且(2)确定了GBM的五个关键基因,其抑制作用对健康脑组织无毒,因此有望作为治疗靶点进一步研究。