Systems Biology Ireland, School of Medicine, University College Dublin, Belfield, Dublin 4, Ireland.
UCD Charles Institute of Dermatology, School of Medicine, University College Dublin, Belfield, Dublin 4, Ireland.
Cell Commun Signal. 2022 Mar 4;20(1):24. doi: 10.1186/s12964-022-00823-5.
Ras is a key cellular signaling hub that controls numerous cell fates via multiple downstream effector pathways. While pathways downstream of effectors such as Raf, PI3K and RalGDS are extensively described in the literature, how other effectors signal downstream of Ras is often still enigmatic.
A comprehensive and unbiased Ras-effector network was reconstructed downstream of 43 effector proteins (converging onto 12 effector classes) using public pathway and protein-protein interaction (PPI) databases. The output is an oriented graph of pairwise interactions defining a 3-layer signaling network downstream of Ras. The 2290 proteins comprising the network were studied for their implication in signaling crosstalk and feedbacks, their subcellular localizations, and their cellular functions.
The final Ras-effector network consists of 2290 proteins that are connected via 19,080 binary PPIs, increasingly distributed across the downstream layers, with 441 PPIs in layer 1, 1660 in layer 2, and 16,979 in layer 3. We identified a high level of crosstalk among proteins of the 12 effector classes. A class-specific Ras sub-network was generated in CellDesigner (.xml file) and a functional enrichment analysis thereof shows that 58% of the processes have previously been associated to a respective effector pathway, with the remaining providing insights into novel and unexplored functions of specific effector pathways.
Our large-scale and cell general Ras-effector network is a crucial steppingstone towards defining the network boundaries. It constitutes a 'reference interactome' and can be contextualized for specific conditions, e.g. different cell types or biopsy material obtained from cancer patients. Further, it can serve as a basis for elucidating systems properties, such as input-output relationships, crosstalk, and pathway redundancy. Video Abstract.
Ras 是细胞信号转导的关键枢纽,通过多种下游效应途径控制着许多细胞命运。虽然文献中广泛描述了效应物如 Raf、PI3K 和 RalGDS 等下游途径,但 Ras 下游其他效应物如何信号传递仍然常常是个谜。
使用公共途径和蛋白质-蛋白质相互作用 (PPI) 数据库,我们综合而无偏地重建了 43 种效应蛋白(汇聚到 12 种效应物类别)下游的 Ras 效应子网络。输出是一个定义 Ras 下游 3 层信号网络的成对相互作用的有向图。网络中包含的 2290 种蛋白质用于研究其在信号串扰和反馈中的作用、亚细胞定位和细胞功能。
最终的 Ras 效应器网络由 2290 种蛋白质组成,通过 19080 个二元 PPI 相互连接,越来越多地分布在下游层中,第 1 层有 441 个 PPI,第 2 层有 1660 个 PPI,第 3 层有 16979 个 PPI。我们发现 12 种效应物类别中的蛋白质之间存在高度的串扰。在 CellDesigner 中生成了特定效应器类别的 Ras 子网(.xml 文件),对其进行功能富集分析表明,58%的过程以前与相应的效应途径相关联,其余的提供了对特定效应途径的新的和未探索的功能的深入了解。
我们的大规模和细胞通用 Ras 效应器网络是定义网络边界的重要垫脚石。它构成了一个“参考相互作用组”,可以根据具体条件进行上下文化,例如不同的细胞类型或从癌症患者获得的活检材料。此外,它可以作为阐明系统特性(如输入-输出关系、串扰和途径冗余)的基础。