Suppr超能文献

邻近标记化学蛋白质组学定义了亚细胞半胱氨酸组和炎症反应性线粒体氧化还原组。

Proximity-labeling chemoproteomics defines the subcellular cysteinome and inflammation-responsive mitochondrial redoxome.

作者信息

Yan Tianyang, Julio Ashley R, Villanueva Miranda, Jones Anthony E, Ball Andréa B, Boatner Lisa M, Turmon Alexandra C, Yen Stephanie L, Desai Heta S, Divakaruni Ajit S, Backus Keriann M

机构信息

Biological Chemistry Department, David Geffen School of Medicine, UCLA, Los Angeles, CA, 90095, USA.

Department of Chemistry and Biochemistry, UCLA, Los Angeles, CA, 90095, USA.

出版信息

bioRxiv. 2023 Jan 31:2023.01.22.525042. doi: 10.1101/2023.01.22.525042.

Abstract

Proteinaceous cysteines function as essential sensors of cellular redox state. Consequently, defining the cysteine redoxome is a key challenge for functional proteomic studies. While proteome-wide inventories of cysteine oxidation state are readily achieved using established, widely adopted proteomic methods such as OxiCat, Biotin Switch, and SP3-Rox, they typically assay bulk proteomes and therefore fail to capture protein localization-dependent oxidative modifications. To obviate requirements for laborious biochemical fractionation, here, we develop and apply an unprecedented two step cysteine capture method to establish the Local Cysteine Capture (Cys-LoC), and Local Cysteine Oxidation (Cys-LOx) methods, which together yield compartment-specific cysteine capture and quantitation of cysteine oxidation state. Benchmarking of the Cys-LoC method across a panel of subcellular compartments revealed more than 3,500 cysteines not previously captured by whole cell proteomic analysis. Application of the Cys-LOx method to LPS stimulated murine immortalized bone marrow-derived macrophages (iBMDM), revealed previously unidentified mitochondria-specific inflammation-induced cysteine oxidative modifications including those associated with oxidative phosphorylation. These findings shed light on post-translational mechanisms regulating mitochondrial function during the cellular innate immune response.

摘要

蛋白质中的半胱氨酸作为细胞氧化还原状态的重要传感器。因此,定义半胱氨酸氧化还原组是功能蛋白质组学研究的一项关键挑战。虽然使用已建立的、广泛采用的蛋白质组学方法(如OxiCat、生物素开关和SP3-Rox)可以轻松实现全蛋白质组半胱氨酸氧化状态的盘点,但它们通常分析的是整体蛋白质组,因此无法捕捉到蛋白质定位依赖性的氧化修饰。为了避免繁琐的生化分级分离要求,我们在此开发并应用了一种前所未有的两步半胱氨酸捕获方法,建立了局部半胱氨酸捕获(Cys-LoC)和局部半胱氨酸氧化(Cys-LOx)方法,这两种方法共同实现了特定区室的半胱氨酸捕获和半胱氨酸氧化状态的定量。在一系列亚细胞区室中对Cys-LoC方法进行基准测试,发现了超过3500个以前全细胞蛋白质组分析未捕获到的半胱氨酸。将Cys-LOx方法应用于脂多糖刺激的小鼠永生化骨髓来源巨噬细胞(iBMDM),揭示了以前未识别的线粒体特异性炎症诱导的半胱氨酸氧化修饰,包括那些与氧化磷酸化相关的修饰。这些发现揭示了细胞固有免疫反应过程中调节线粒体功能的翻译后机制。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fa40/9901250/91eb30547c42/nihpp-2023.01.22.525042v2-f0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验