Njoroge Willie, Maina Rachel, Elena Frank, Atwoli Lukoye, Wu Zhenke, Ngugi Anthony, Sen Srijan, Wang Jian, Wong Stephen, Baker Jessica, Haus Eileen, Khakali Linda, Aballa Andrew, Orwa James, Nyongesa Moses, Merali Zul, Akbar Karim, Abubakar Amina
Aga Khan University Nairobi.
University of Michigan.
Res Sq. 2023 Jan 16:rs.3.rs-2458763. doi: 10.21203/rs.3.rs-2458763/v1.
This study proposes to identify and validate weighted sensor stream signatures that predict near-term risk of a major depressive episode and future mood among healthcare workers in Kenya. The study will deploy a mobile app platform and use novel data science analytic approaches (Artificial Intelligence and Machine Learning) to identifying predictors of mental health disorders among 500 randomly sampled healthcare workers from five healthcare facilities in Nairobi, Kenya. This study will lay the basis for creating agile and scalable systems for rapid diagnostics that could inform precise interventions for mitigating depression and ensure a healthy, resilient healthcare workforce to develop sustainable economic growth in Kenya, East Africa, and ultimately neighboring countries in sub-Saharan Africa. This protocol paper provides an opportunity to share the planned study implementation methods and approaches. : A mobile technology platform that is scalable and can be used to understand and improve mental health outcomes is of critical importance.
本研究旨在识别并验证加权传感器数据流特征,以预测肯尼亚医护人员近期发生重度抑郁发作的风险以及未来的情绪状况。该研究将部署一个移动应用平台,并使用新颖的数据科学分析方法(人工智能和机器学习),从肯尼亚内罗毕的五个医疗机构中随机抽取500名医护人员,识别心理健康障碍的预测因素。本研究将为创建敏捷且可扩展的快速诊断系统奠定基础,该系统可为减轻抑郁症的精准干预提供依据,并确保拥有一支健康、有韧性的医护人员队伍,以促进肯尼亚、东非乃至撒哈拉以南非洲邻国的可持续经济增长。本方案文件提供了一个分享计划中的研究实施方法和途径的机会。:一个可扩展且可用于理解和改善心理健康结果的移动技术平台至关重要。