Suppr超能文献

机器学习揭示卵巢癌小鼠模型中的脂质组重塑动态

Machine Learning Reveals Lipidome Remodeling Dynamics in a Mouse Model of Ovarian Cancer.

作者信息

Bifarin Olatomiwa O, Sah Samyukta, Gaul David A, Moore Samuel G, Chen Ruihong, Palaniappan Murugesan, Kim Jaeyeon, Matzuk Martin M, Fernández Facundo M

机构信息

School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia 30332, United States.

Petit Institute of Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, Georgia 30332, United States.

出版信息

bioRxiv. 2023 Jan 4:2023.01.04.520434. doi: 10.1101/2023.01.04.520434.

Abstract

UNLABELLED

Ovarian cancer (OC) is one of the deadliest cancers affecting the female reproductive system. It may present little or no symptoms at the early stages, and typically unspecific symptoms at later stages. High-grade serous ovarian cancer (HGSC) is the subtype responsible for most ovarian cancer deaths. However, very little is known about the metabolic course of this disease, particularly in its early stages. In this longitudinal study, we examined the temporal course of serum lipidome changes using a robust HGSC mouse model and machine learning data analysis. Early progression of HGSC was marked by increased levels of phosphatidylcholines and phosphatidylethanolamines. In contrast, later stages featured more diverse lipids alterations, including fatty acids and their derivatives, triglycerides, ceramides, hexosylceramides, sphingomyelins, lysophosphatidylcholines, and phosphatidylinositols. These alterations underscored unique perturbations in cell membrane stability, proliferation, and survival during cancer development and progression, offering potential targets for early detection and prognosis of human ovarian cancer.

TEASER

Time-resolved lipidome remodeling in an ovarian cancer model is studied through lipidomics and machine learning.

摘要

未标注

卵巢癌(OC)是影响女性生殖系统的最致命癌症之一。它在早期可能几乎没有症状,后期通常症状不具特异性。高级别浆液性卵巢癌(HGSC)是导致大多数卵巢癌死亡的亚型。然而,对于这种疾病的代谢过程,尤其是早期阶段,人们了解甚少。在这项纵向研究中,我们使用强大的HGSC小鼠模型和机器学习数据分析来研究血清脂质组变化的时间进程。HGSC的早期进展以磷脂酰胆碱和磷脂酰乙醇胺水平升高为特征。相比之下,后期阶段脂质变化更多样化,包括脂肪酸及其衍生物、甘油三酯、神经酰胺、己糖神经酰胺、鞘磷脂、溶血磷脂酰胆碱和磷脂酰肌醇。这些变化突出了癌症发生和发展过程中细胞膜稳定性、增殖和存活方面的独特扰动,为人类卵巢癌的早期检测和预后提供了潜在靶点。

teaser:通过脂质组学和机器学习研究卵巢癌模型中的时间分辨脂质组重塑。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6aea/9881992/b397cc4ef7aa/nihpp-2023.01.04.520434v1-f0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验