Suppr超能文献

一种高性能的言语神经假体。

A high-performance speech neuroprosthesis.

作者信息

Willett Francis R, Kunz Erin, Fan Chaofei, Avansino Donald, Wilson Guy, Choi Eun Young, Kamdar Foram, Hochberg Leigh R H, Druckmann Shaul, Shenoy Krishna, Henderson Jaimie

出版信息

bioRxiv. 2023 Apr 25:2023.01.21.524489. doi: 10.1101/2023.01.21.524489.

Abstract

Speech brain-computer interfaces (BCIs) have the potential to restore rapid communication to people with paralysis by decoding neural activity evoked by attempted speaking movements into text or sound. Early demonstrations, while promising, have not yet achieved accuracies high enough for communication of unconstrainted sentences from a large vocabulary. Here, we demonstrate the first speech-to-text BCI that records spiking activity from intracortical microelectrode arrays. Enabled by these high-resolution recordings, our study participant, who can no longer speak intelligibly due amyotrophic lateral sclerosis (ALS), achieved a 9.1% word error rate on a 50 word vocabulary (2.7 times fewer errors than the prior state of the art speech BCI2) and a 23.8% word error rate on a 125,000 word vocabulary (the first successful demonstration of large-vocabulary decoding). Our BCI decoded speech at 62 words per minute, which is 3.4 times faster than the prior record for any kind of BCI and begins to approach the speed of natural conversation (160 words per minute). Finally, we highlight two aspects of the neural code for speech that are encouraging for speech BCIs: spatially intermixed tuning to speech articulators that makes accurate decoding possible from only a small region of cortex, and a detailed articulatory representation of phonemes that persists years after paralysis. These results show a feasible path forward for using intracortical speech BCIs to restore rapid communication to people with paralysis who can no longer speak.

摘要

语音脑机接口(BCIs)有潜力通过将尝试说话动作诱发的神经活动解码为文本或声音,来恢复瘫痪患者的快速交流能力。早期的演示虽然很有前景,但尚未实现足够高的准确率,以用于从大量词汇中传达无约束的句子。在此,我们展示了首个将大脑皮层内微电极阵列记录的尖峰活动转换为文本的语音脑机接口。基于这些高分辨率记录,我们的研究参与者因肌萎缩侧索硬化症(ALS)而无法清晰说话,在50个单词的词汇表上实现了9.1%的单词错误率(比之前最先进的语音脑机接口2的错误率少2.7倍),在12.5万个单词的词汇表上实现了23.8%的单词错误率(首次成功展示大词汇量解码)。我们的脑机接口每分钟可解码62个单词,比任何类型的脑机接口之前的记录快3.4倍,并开始接近自然对话的速度(每分钟160个单词)。最后,我们强调了语音神经编码中对语音脑机接口具有启发性的两个方面:对语音发音器官的空间混合调谐,使得仅从一小片皮层区域就能进行准确解码;以及在瘫痪多年后仍然存在的音素的详细发音表征。这些结果为使用大脑皮层内语音脑机接口为无法说话的瘫痪患者恢复快速交流能力指明了一条可行的道路。

相似文献

1
A high-performance speech neuroprosthesis.一种高性能的言语神经假体。
bioRxiv. 2023 Apr 25:2023.01.21.524489. doi: 10.1101/2023.01.21.524489.
2
A high-performance speech neuroprosthesis.高性能言语神经假体
Nature. 2023 Aug;620(7976):1031-1036. doi: 10.1038/s41586-023-06377-x. Epub 2023 Aug 23.
5
An accurate and rapidly calibrating speech neuroprosthesis.一种精确且快速校准的言语神经假体。
medRxiv. 2024 Apr 10:2023.12.26.23300110. doi: 10.1101/2023.12.26.23300110.
7
An instantaneous voice synthesis neuroprosthesis.一种即时语音合成神经假体。
bioRxiv. 2024 Sep 20:2024.08.14.607690. doi: 10.1101/2024.08.14.607690.
9
Generalizing neural signal-to-text brain-computer interfaces.推广神经信号到文本的脑机接口。
Biomed Phys Eng Express. 2021 Apr 30;7(3). doi: 10.1088/2057-1976/abf6ab.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验