Suppr超能文献

动力蛋白中间链和Ndel1在动力蛋白组装与激活中的保守作用

Conserved Roles for the Dynein Intermediate Chain and Ndel1 in Assembly and Activation of Dynein.

作者信息

Okada Kyoko, Iyer Bharat R, Lammers Lindsay G, Gutierrez Pedro, Li Wenzhe, Markus Steven M, McKenney Richard J

机构信息

Department of Molecular and Cellular Biology, University of California, Davis, Davis, CA, USA.

Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, CO, USA.

出版信息

bioRxiv. 2023 Jan 14:2023.01.13.523097. doi: 10.1101/2023.01.13.523097.

Abstract

Cytoplasmic dynein, the primary retrograde microtubule transport motor within cells, must be activated for processive motility through the regulated assembly of a dynein-dynactin-adapter (DDA) complex. The interaction between dynein and dynactin was initially ascribed to the N-terminus of the dynein intermediate chain (IC) and a coiled-coil of the dynactin subunit p150 . However, cryo-EM structures of DDA complexes have not resolve these regions of the IC and p150 , raising questions about the importance of this interaction. The IC N-terminus (ICN) also interacts with the dynein regulators Nde1/Ndel1, which compete with p150 for binding to ICN. Using a combination of approaches, we reveal that the ICN plays critical, evolutionarily conserved roles in DDA assembly by interacting with dynactin and Ndel1, the latter of which recruits the DDA assembly factor LIS1 to the dynein complex. In contrast to prior models, we find that LIS1 cannot simultaneously bind to Ndel1 and dynein, indicating that LIS1 must be handed off from Ndel1 to dynein in temporally discrete steps. Whereas exogenous Ndel1 or p150 disrupts DDA complex assembly , neither perturbs preassembled DDA complexes, indicating that the IC is stably bound to p150 within activated DDA complexes. Our study reveals previously unknown regulatory steps in the dynein activation pathway, and provides a more complete model for how the activities of LIS1/Ndel1 and dynactin/cargo-adapters are integrated to regulate dynein motor activity.

摘要

胞质动力蛋白是细胞内主要的逆行微管运输马达,必须通过动力蛋白-动力肌动蛋白-衔接蛋白(DDA)复合物的有序组装来激活,以实现持续运动。动力蛋白与动力肌动蛋白之间的相互作用最初被认为是动力蛋白中间链(IC)的N端与动力肌动蛋白亚基p150的卷曲螺旋之间的相互作用。然而,DDA复合物的冷冻电镜结构尚未解析IC和p150的这些区域,这引发了关于这种相互作用重要性的疑问。IC的N端(ICN)还与动力蛋白调节因子Nde1/Ndel1相互作用,后者与p150竞争结合ICN。通过多种方法相结合,我们发现ICN通过与动力肌动蛋白和Ndel1相互作用,在DDA组装中发挥关键的、进化上保守的作用,其中Ndel1将DDA组装因子LIS1招募到动力蛋白复合物中。与先前的模型不同,我们发现LIS1不能同时结合Ndel1和动力蛋白,这表明LIS1必须在时间上离散的步骤中从Ndel1传递给动力蛋白。虽然外源性Ndel1或p150会破坏DDA复合物的组装,但两者都不会干扰预先组装好的DDA复合物,这表明在活化的DDA复合物中IC与p150稳定结合。我们的研究揭示了动力蛋白激活途径中以前未知的调节步骤,并为LIS1/Ndel1和动力肌动蛋白/货物衔接蛋白的活性如何整合以调节动力蛋白马达活性提供了一个更完整的模型。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e78e/9882231/684c7cd8dfab/nihpp-2023.01.13.523097v1-f0001.jpg

相似文献

1
Conserved Roles for the Dynein Intermediate Chain and Ndel1 in Assembly and Activation of Dynein.
bioRxiv. 2023 Jan 14:2023.01.13.523097. doi: 10.1101/2023.01.13.523097.
2
Conserved roles for the dynein intermediate chain and Ndel1 in assembly and activation of dynein.
Nat Commun. 2023 Sep 20;14(1):5833. doi: 10.1038/s41467-023-41466-5.
4
Nde1 Promotes Lis1-Mediated Activation of Dynein.
bioRxiv. 2023 Sep 9:2023.05.26.542537. doi: 10.1101/2023.05.26.542537.
5
Nde1 promotes Lis1-mediated activation of dynein.
Nat Commun. 2023 Nov 9;14(1):7221. doi: 10.1038/s41467-023-42907-x.
6
Ndel1 disfavors dynein-dynactin-adaptor complex formation in two distinct ways.
J Biol Chem. 2023 Jun;299(6):104735. doi: 10.1016/j.jbc.2023.104735. Epub 2023 Apr 21.
7
Ndel1 modulates dynein activation in two distinct ways.
bioRxiv. 2023 Jan 25:2023.01.25.525437. doi: 10.1101/2023.01.25.525437.
8
Nde1 and Ndel1: Outstanding Mysteries in Dynein-Mediated Transport.
Front Cell Dev Biol. 2022 Apr 12;10:871935. doi: 10.3389/fcell.2022.871935. eCollection 2022.
10
Structural dynamics and multiregion interactions in dynein-dynactin recognition.
J Biol Chem. 2011 Nov 11;286(45):39349-59. doi: 10.1074/jbc.M111.296277. Epub 2011 Sep 19.

本文引用的文献

1
Microtubule-binding-induced allostery triggers LIS1 dissociation from dynein prior to cargo transport.
Nat Struct Mol Biol. 2023 Sep;30(9):1365-1379. doi: 10.1038/s41594-023-01010-x. Epub 2023 Jun 15.
2
Using Budding Yeast as a Model to Understand Dynein-Mediated Cargo Transport.
Methods Mol Biol. 2023;2623:25-42. doi: 10.1007/978-1-0716-2958-1_2.
3
Structure of dynein-dynactin on microtubules shows tandem adaptor binding.
Nature. 2022 Oct;610(7930):212-216. doi: 10.1038/s41586-022-05186-y. Epub 2022 Sep 7.
4
ColabFold: making protein folding accessible to all.
Nat Methods. 2022 Jun;19(6):679-682. doi: 10.1038/s41592-022-01488-1. Epub 2022 May 30.
5
Nde1 and Ndel1: Outstanding Mysteries in Dynein-Mediated Transport.
Front Cell Dev Biol. 2022 Apr 12;10:871935. doi: 10.3389/fcell.2022.871935. eCollection 2022.
7
Transient Tertiary Structures of Disordered Dynein Intermediate Chain Regulate its Interactions with Multiple Partners.
J Mol Biol. 2021 Sep 3;433(18):167152. doi: 10.1016/j.jmb.2021.167152. Epub 2021 Jul 14.
8
Highly accurate protein structure prediction with AlphaFold.
Nature. 2021 Aug;596(7873):583-589. doi: 10.1038/s41586-021-03819-2. Epub 2021 Jul 15.
9
10
Cryo-EM reveals the complex architecture of dynactin's shoulder region and pointed end.
EMBO J. 2021 Apr 15;40(8):e106164. doi: 10.15252/embj.2020106164. Epub 2021 Mar 18.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验