Yi Xinpei, Wen Bo, Ji Shuyi, Saltzman Alex, Jaehnig Eric J, Lei Jonathan T, Gao Qiang, Zhang Bing
bioRxiv. 2023 Jan 12:2023.01.11.523329. doi: 10.1101/2023.01.11.523329.
Shotgun phosphoproteomics enables high-throughput analysis of phosphopeptides in biological samples, but low phosphopeptide identification rate in data analysis limits the potential of this technology. Here we present DeepRescore2, a computational workflow that leverages deep learning-based retention time and fragment ion intensity predictions to improve phosphopeptide identification and phosphosite localization. Using a state-of-the-art computational workflow as a benchmark, DeepRescore2 increases the number of correctly identified peptide-spectrum matches by 17% in a synthetic dataset and identifies 19%-46% more phosphopeptides in biological datasets. In a liver cancer dataset, 30% of the significantly altered phosphosites between tumor and normal tissues and 60% of the prognosis-associated phosphosites identified from DeepRescore2-processed data could not be identified based on the state-of-the-art workflow. Notably, DeepRescore2-processed data uniquely identifies EGFR hyperactivation as a new target in poor-prognosis liver cancer, which is validated experimentally. Integration of deep learning prediction in DeepRescore2 improves phosphopeptide identification and facilitates biological discoveries.
鸟枪法磷酸化蛋白质组学能够对生物样品中的磷酸肽进行高通量分析,但数据分析中磷酸肽的低鉴定率限制了该技术的潜力。在此,我们展示了DeepRescore2,这是一种计算工作流程,它利用基于深度学习的保留时间和碎片离子强度预测来改进磷酸肽鉴定和磷酸化位点定位。以一种先进的计算工作流程为基准,DeepRescore2在合成数据集中将正确鉴定的肽谱匹配数量增加了17%,并在生物数据集中鉴定出多19%-46%的磷酸肽。在一个肝癌数据集中,基于先进工作流程无法鉴定出肿瘤组织和正常组织之间30%的显著改变的磷酸化位点,以及从DeepRescore2处理的数据中鉴定出的60%的预后相关磷酸化位点。值得注意的是,经过DeepRescore2处理的数据独特地将表皮生长因子受体(EGFR)过度激活鉴定为预后不良肝癌的一个新靶点,这一点已通过实验得到验证。在DeepRescore2中整合深度学习预测可改进磷酸肽鉴定并促进生物学发现。