Suppr超能文献

连接大数据:整合来自ENIGMA联盟不等价认知测量的程序。

Bridging Big Data: Procedures for Combining Non-equivalent Cognitive Measures from the ENIGMA Consortium.

作者信息

Kennedy Eamonn, Vadlamani Shashank, Lindsey Hannah M, Lei Pui-Wa, Jo-Pugh Mary, Adamson Maheen, Alda Martin, Alonso-Lana Silvia, Ambrogi Sonia, Anderson Tim J, Arango Celso, Asarnow Robert F, Avram Mihai, Ayesa-Arriola Rosa, Babikian Talin, Banaj Nerisa, Bird Laura J, Borgwardt Stefan, Brodtmann Amy, Brosch Katharina, Caeyenberghs Karen, Calhoun Vince D, Chiaravalloti Nancy D, Cifu David X, Crespo-Facorro Benedicto, Dalrymple-Alford John C, Dams-O'Connor Kristen, Dannlowski Udo, Darby David, Davenport Nicholas, DeLuca John, Diaz-Caneja Covadonga M, Disner Seth G, Dobryakova Ekaterina, Ehrlich Stefan, Esopenko Carrie, Ferrarelli Fabio, Frank Lea E, Franz Carol, Fuentes-Claramonte Paola, Genova Helen, Giza Christopher C, Goltermann Janik, Grotegerd Dominik, Gruber Marius, Gutierrez-Zotes Alfonso, Ha Minji, Haavik Jan, Hinkin Charles, Hoskinson Kristen R, Hubl Daniela, Irimia Andrei, Jansen Andreas, Kaess Michael, Kang Xiaojian, Kenney Kimbra, Keřková Barbora, Khlif Mohamed Salah, Kim Minah, Kindler Jochen, Kircher Tilo, Knížková Karolina, Kolskår Knut K, Krch Denise, Kremen William S, Kuhn Taylor, Kumari Veena, Kwon Jun Soo, Langella Roberto, Laskowitz Sarah, Lee Jungha, Lengenfelder Jean, Liebel Spencer W, Liou-Johnson Victoria, Lippa Sara M, Løvstad Marianne, Lundervold Astri, Marotta Cassandra, Marquardt Craig A, Mattos Paulo, Mayeli Ahmad, McDonald Carrie R, Meinert Susanne, Melzer Tracy R, Merchán-Naranjo Jessica, Michel Chantal, Morey Rajendra A, Mwangi Benson, Myall Daniel J, Nenadić Igor, Newsome Mary R, Nunes Abraham, O'Brien Terence, Oertel Viola, Ollinger John, Olsen Alexander, de la Foz Victor Ortiz García, Ozmen Mustafa, Pardoe Heath, Parent Marise, Piras Fabrizio, Piras Federica, Pomarol-Clotet Edith, Repple Jonathan, Richard Geneviève, Rodriguez Jonathan, Rodriguez Mabel, Rootes-Murdy Kelly, Rowland Jared, Ryan Nicholas P, Salvador Raymond, Sanders Anne-Marthe, Schmidt Andre, Soares Jair C, Spalleta Gianfranco, Španiel Filip, Stasenko Alena, Stein Frederike, Straube Benjamin, Thames April, Thomas-Odenthal Florian, Thomopoulos Sophia I, Tone Erin, Torres Ivan, Troyanskaya Maya, Turner Jessica A, Ulrichsen Kristine M, Umpierrez Guillermo, Vilella Elisabet, Vivash Lucy, Walker William C, Werden Emilio, Westlye Lars T, Wild Krista, Wroblewski Adrian, Wu Mon-Ju, Wylie Glenn R, Yatham Lakshmi N, Zunta-Soares Giovana B, Thompson Paul M, Tate David F, Hillary Frank G, Dennis Emily L, Wilde Elisabeth A

机构信息

Department of Neurology, University of Utah School of Medicine, Salt Lake City, UT, 84132.

Division of Epidemiology, University of Utah, Salt Lake City, UT, 84132.

出版信息

bioRxiv. 2023 Apr 7:2023.01.16.524331. doi: 10.1101/2023.01.16.524331.

Abstract

Investigators in neuroscience have turned to Big Data to address replication and reliability issues by increasing sample sizes, statistical power, and representativeness of data. These efforts unveil new questions about integrating data arising from distinct sources and instruments. We focus on the most frequently assessed cognitive domain - memory testing - and demonstrate a process for reliable data harmonization across three common measures. We aggregated global raw data from 53 studies totaling N = 10,505 individuals. A mega-analysis was conducted using empirical bayes harmonization to remove site effects, followed by linear models adjusting for common covariates. A continuous item response theory (IRT) model estimated each individual's latent verbal learning ability while accounting for item difficulties. Harmonization significantly reduced inter-site variance while preserving covariate effects, and our conversion tool is freely available online. This demonstrates that large-scale data sharing and harmonization initiatives can address reproducibility and integration challenges across the behavioral sciences.

摘要

神经科学领域的研究人员已转向大数据,通过增加样本量、统计功效和数据代表性来解决重复性和可靠性问题。这些努力揭示了有关整合来自不同来源和仪器的数据的新问题。我们专注于最常评估的认知领域——记忆测试,并展示了一种跨三种常用测量方法进行可靠数据协调的过程。我们汇总了来自53项研究的全球原始数据,共计N = 10,505人。使用经验贝叶斯协调进行了一项元分析,以消除地点效应,然后使用线性模型对常见协变量进行调整。一个连续项目反应理论(IRT)模型在考虑项目难度的同时估计了每个人的潜在言语学习能力。协调显著降低了地点间方差,同时保留了协变量效应,并且我们的转换工具可在网上免费获取。这表明大规模数据共享和协调举措可以解决行为科学领域的可重复性和整合挑战。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a8cd/10088492/8d76ef83fb07/nihpp-2023.01.16.524331v2-f0001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验