Saito Masahiro, Saito Keisuke, Ishikita Hiroshi
Department of Applied Chemistry, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8654, Japan.
Research Center for Advanced Science and Technology, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8904, Japan.
iScience. 2023 Jul 8;26(8):107352. doi: 10.1016/j.isci.2023.107352. eCollection 2023 Aug 18.
Manganese (Mn) serves as the catalytic center for water splitting in photosystem II (PSII), despite the abundance of iron (Fe) on earth. As a first step toward why Mn and not Fe is employed by Nature in the water oxidation catalyst, we investigated the FeCaO cluster in the PSII protein environment using a quantum mechanical/molecular mechanical (QM/MM) approach, assuming an equivalence between Mn(III/IV) and Fe(II/III). Substituting Mn with Fe resulted in the protonation of -oxo bridges at sites O2 and O3 by Arg357 and D1-His337, respectively. While the MnCaO cluster exhibits distinct open- and closed-cubane S conformations, the FeCaO cluster lacks this variability due to an equal spin distribution over sites Fe1 and Fe4. The absence of a low-barrier H-bond between a ligand water molecule (W1) and D1-Asp61 in the FeCaO cluster may underlie its incapability for ligand water deprotonation, highlighting the relevance of Mn in natural water splitting.
尽管地球上铁(Fe)含量丰富,但锰(Mn)却是光系统II(PSII)中水分裂的催化中心。作为探究为何自然界在水氧化催化剂中使用的是Mn而非Fe的第一步,我们采用量子力学/分子力学(QM/MM)方法,在PSII蛋白质环境中研究了FeCaO簇,假定Mn(III/IV)和Fe(II/III)具有等效性。用Fe替代Mn分别导致O2和O3位点的-氧桥被Arg357和D1-His337质子化。虽然MnCaO簇呈现出明显的开放和闭合立方烷S构象,但由于Fe1和Fe4位点上自旋分布均匀,FeCaO簇缺乏这种变异性。FeCaO簇中配体水分子(W1)与D1-Asp61之间不存在低势垒氢键,这可能是其无法使配体水去质子化的原因,突出了Mn在自然水分裂中的重要性。