Nakano Masaki, Imamura Ryuki, Sugi Takuma, Nishimura Masaki
Molecular Neuroscience Research Center, Shiga University of Medical Science, Seta-Tsukinowa, Otsu, Shiga 520-2192, Japan.
Program of Biomedical Science, Graduate School of Integrated Sciences for Life, Hiroshima University, 3-10-23 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-0046, Japan.
PNAS Nexus. 2022 Oct 25;1(5):pgac242. doi: 10.1093/pnasnexus/pgac242. eCollection 2022 Nov.
The family with sequence similarity 3 (FAM3) superfamily represents a distinct class of signaling molecules that share a characteristic structural feature. Mammalian FAM3 member C (FAM3C) is abundantly expressed in neuronal cells and released from the synaptic vesicle to the extracellular milieu in an activity-dependent manner. However, the neural function of FAM3C has yet to be fully clarified. We found that the protein sequence of human FAM3C is similar to that of the N-terminal tandem domains of FAMP-1 (formerly named M70.4), which has been recognized as a tentative ortholog of mammalian FAM3 members or protein--mannose β-1,2--acetylglucosaminyltransferase 1 (POMGnT1). Missense mutations in the N-terminal domain, named Fam3L2, caused defects in memory-based thermotaxis but not in chemotaxis behaviors; these defects could be restored by AFD neuron-specific exogenous expression of a polypeptide corresponding to the Fam3L2 domain but not that corresponding to the Fam3L1. Moreover, human FAM3C could also rescue defective thermotaxis behavior in mutant worms. An in vitro assay revealed that the Fam3L2 and FAM3C can bind with carbohydrates, similar to the stem domain of POMGnT1. The athermotactic mutations in the Fam3L2 domain caused a partial loss-of-function of FAMP-1, whereas the C-terminal truncation mutations led to more severe neural dysfunction that reduced locomotor activity. Overall, we show that the Fam3L2 domain-dependent function of FAMP-1 in AFD neurons is required for the thermotaxis migration of and that human FAM3C can act as a substitute for the Fam3L2 domain in thermotaxis behaviors.
序列相似性3家族(FAM3)超家族代表了一类独特的信号分子,它们具有共同的特征性结构特征。哺乳动物FAM3成员C(FAM3C)在神经元细胞中大量表达,并以活性依赖的方式从突触小泡释放到细胞外环境中。然而,FAM3C的神经功能尚未完全阐明。我们发现,人类FAM3C的蛋白质序列与FAMP-1(以前称为M70.4)的N端串联结构域相似,FAMP-1已被认为是哺乳动物FAM3成员或蛋白质-甘露糖β-1,2-N-乙酰葡糖胺基转移酶1(POMGnT1)的暂定直系同源物。N端结构域(称为Fam3L2)中的错义突变导致基于记忆的温度趋性缺陷,但不影响化学趋性行为;这些缺陷可以通过AFD神经元特异性外源表达与Fam3L2结构域对应的多肽来恢复,但不能通过与Fam3L1对应的多肽来恢复。此外,人类FAM3C也可以挽救突变蠕虫中缺陷的温度趋性行为。体外试验表明,Fam3L2和FAM3C可以与碳水化合物结合,类似于POMGnT1的茎结构域。Fam3L2结构域中的温度不敏感突变导致FAMP-1部分功能丧失,而C端截短突变导致更严重的神经功能障碍,从而降低运动活性。总体而言,我们表明,FAMP-1在AFD神经元中依赖Fam3L2结构域的功能对于温度趋性迁移是必需的,并且人类FAM3C可以在温度趋性行为中替代Fam3L2结构域。