Zino Lorenzo, Ye Mengbin, Cao Ming
Engineering and Technology Institute Groningen, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands.
Centre for Optimisation and Decision Science, Curtin University, Kent Street, Bentley WA 6102, Australia.
PNAS Nexus. 2022 Oct 7;1(5):pgac229. doi: 10.1093/pnasnexus/pgac229. eCollection 2022 Nov.
Dynamic norms have recently emerged as a powerful method to encourage individuals to adopt an innovation by highlighting a growing trend in its uptake. However, there have been no concrete attempts to understand how this individual-level mechanism might shape the collective population behavior. Here, we develop a framework to examine this by encapsulating dynamic norms within a game-theoretic mathematical model for innovation diffusion. Specifically, we extend a network coordination game by incorporating a probabilistic mechanism where an individual adopts the action with growing popularity, instead of the standard best-response update rule; the probability of such an event captures the population's "sensitivity" to dynamic norms. Theoretical analysis reveals that sensitivity to dynamic norms is key to facilitating social diffusion. Small increases in sensitivity reduces the advantage of the innovation over status quo or the number of initial innovators required to unlock diffusion, while a sufficiently large sensitivity alone guarantees diffusion.
动态规范最近已成为一种强有力的方法,通过突出某种创新采用率的增长趋势来鼓励个人采用该创新。然而,尚未有具体尝试去理解这种个体层面的机制如何塑造集体层面的群体行为。在此,我们通过将动态规范纳入一个用于创新扩散的博弈论数学模型中,开发了一个框架来对此进行研究。具体而言,我们通过纳入一种概率机制来扩展一个网络协调博弈,在该机制中,个体采用越来越流行的行动,而不是标准的最佳响应更新规则;此类事件的概率体现了群体对动态规范的“敏感度”。理论分析表明,对动态规范的敏感度是促进社会扩散的关键。敏感度的小幅提升会降低创新相对于现状的优势,或者降低开启扩散所需的初始创新者数量,而仅足够大的敏感度就能保证扩散。