Suppr超能文献

对用于太阳能转换的CsGeI中铁电与光伏特性之间关系的见解。

Insights into the relationship between ferroelectric and photovoltaic properties in CsGeI for solar energy conversion.

作者信息

Chelil N, Sahnoun M, Benhalima Z, Larbi R, Eldin Sayed M

机构信息

Laboratoire de Physique Quantique de la Matière et Modélisation Mathématique (LPQ3M), University of Mascara Algeria

Center of Research, Faculty of Engineering, Future University in Egypt New Cairo 11835 Egypt.

出版信息

RSC Adv. 2023 Jan 11;13(3):1955-1963. doi: 10.1039/d2ra06860e. eCollection 2023 Jan 6.

Abstract

Materials such as oxide and halide perovskites that simultaneously exhibit spontaneous polarization and absorption of visible light are called photoferroelectrics. They hold great promise for the development of applications in optoelectronics, information storage, and energy conversion. Devices based on ferroelectric photovoltaic materials yield an open-circuit voltage that is much higher than the band gap of the corresponding active material owing to a strong internal electric field. Their efficiency has been proposed to exceed the Shockley-Queisser limit for ideal solar cells. In this paper, we present theoretical calculations of the photovoltaic properties of the ferroelectric phase of the inorganic germanium halide perovskite (CsGeI). Firstly, the electronic, optical and ferroelectric properties were calculated using the FP-LAPW method based on density functional theory, and the modern theory of polarization based on the Berry phase approach, respectively. The photovoltaic performance was evaluated using the Spectroscopic Limited Maximum Efficiency (SLME) model based on the results of first-principles calculations, in which the power conversion efficiency and the photocurrent density-voltage (-) characteristics were estimated. The calculated results show that the valence band maximum (VBM) of CsGeI is mainly contributed by the I-5p and Ge-4s orbitals, whereas the conduction band is predominantly derived from Ge-4p orbitals. It can be seen that CsGeI exhibits a direct bandgap semiconductor at the symmetric point of with a value of 1.53 eV, which is in good agreement with previous experimental results. The ferroelectric properties were therefore investigated. With a switching energy barrier of 19.83 meV per atom, CsGeI has a higher theoretical ferroelectric polarization strength of 15.82 μC cm. The SLME calculation also shows that CsGeI has a high photoelectric conversion efficiency of over 28%. In addition to confirming their established favorable band gap and strong absorption, we demonstrate that CsGeI exhibits a large shift current bulk photovoltaic effect of up to 40 μA V in the visible region. Thus, this material is a potential ferroelectric photovoltaic absorbed layer with high efficiency.

摘要

诸如氧化物和卤化物钙钛矿之类的材料,它们同时表现出自发极化和可见光吸收特性,被称为光铁电体。它们在光电子学、信息存储和能量转换等应用的发展方面具有巨大潜力。基于铁电光伏材料的器件由于强大的内电场而产生的开路电压远高于相应活性材料的带隙。有人提出它们的效率能超过理想太阳能电池的肖克利-奎塞尔极限。在本文中,我们给出了无机卤化锗钙钛矿(CsGeI)铁电相光伏特性的理论计算。首先,分别使用基于密度泛函理论的FP-LAPW方法和基于贝里相位方法的现代极化理论计算了其电子、光学和铁电特性。基于第一性原理计算结果,使用光谱极限最大效率(SLME)模型评估了光伏性能,其中估算了功率转换效率和光电流密度-电压(-)特性。计算结果表明,CsGeI的价带最大值(VBM)主要由I-5p和Ge-4s轨道贡献,而导带主要源自Ge-4p轨道。可以看出,CsGeI在 对称点处表现为直接带隙半导体,其值为1.53 eV,这与先前的实验结果吻合良好。因此对其铁电特性进行了研究。CsGeI每个原子的开关能垒为19.83 meV,具有较高的理论铁电极化强度15.82 μC/cm²。SLME计算还表明,CsGeI具有超过28%的高光电转换效率。除了证实它们已有的良好带隙和强吸收特性外,我们还证明CsGeI在可见光区域表现出高达40 μA/V的大转移电流体光伏效应。因此,这种材料是一种潜在的高效铁电光伏吸收层。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4446/9833107/9b5e610ae9f8/d2ra06860e-f2.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验