Suppr超能文献

迈向经导管主动脉瓣植入术所致传导异常的个体化预测:一种机械建模与机器学习相结合的方法。

Towards patient-specific prediction of conduction abnormalities induced by transcatheter aortic valve implantation: a combined mechanistic modelling and machine learning approach.

作者信息

Galli Valeria, Loncaric Filip, Rocatello Giorgia, Astudillo Patricio, Sanchis Laura, Regueiro Ander, De Backer Ole, Swaans Martin, Bosmans Johan, Ribeiro Joana Maria, Lamata Pablo, Sitges Marta, de Jaegere Peter, Mortier Peter

机构信息

FEops NV, Technologiepark 122, 9052 Ghent, Belgium.

Institute of Biomedical Research August Pi Sunyer (IDIBAPS), Carrer del Rosselló, 149, 08036, Barcelona, Spain.

出版信息

Eur Heart J Digit Health. 2021 Aug 20;2(4):606-615. doi: 10.1093/ehjdh/ztab063. eCollection 2021 Dec.

Abstract

AIMS

Post-procedure conduction abnormalities (CA) remain a common complication of transcatheter aortic valve implantation (TAVI), highlighting the need for personalized prediction models. We used machine learning (ML), integrating statistical and mechanistic modelling to provide a patient-specific estimation of the probability of developing CA after TAVI.

METHODS AND RESULTS

The cohort consisted of 151 patients with normal conduction and no pacemaker at baseline who underwent TAVI in nine European centres. Devices included CoreValve, Evolut R, Evolut PRO, and Lotus. Preoperative multi-slice computed tomography was performed. Virtual valve implantation with patient-specific computer modelling and simulation (CM&S) allowed calculation of valve-induced contact pressure on the anatomy. The primary composite outcome was new onset left or right bundle branch block or permanent pacemaker implantation (PPI) before discharge. A supervised ML approach was applied with eight models predicting CA based on anatomical, procedural and mechanistic data. CA occurred in 59% of patients ( = 89), more often after mechanical than first or second generation self-expanding valves (68% vs. 60% vs. 41%). CM&S revealed significantly higher contact pressure and contact pressure index in patients with CA. The best model achieved 83% accuracy (area under the curve 0.84) and sensitivity, specificity, positive predictive value, negative predictive value, and F1-score of 100%, 62%, 76%, 100%, and 82%.

CONCLUSION

ML, integrating statistical and mechanistic modelling, achieved an accurate prediction of CA after TAVI. This study demonstrates the potential of a synergetic approach for personalizing procedure planning, allowing selection of the optimal device and implantation strategy, avoiding new CA and/or PPI.

摘要

目的

术后传导异常(CA)仍是经导管主动脉瓣植入术(TAVI)的常见并发症,这凸显了个性化预测模型的必要性。我们使用机器学习(ML),整合统计和机制建模,以提供患者特异性的TAVI术后发生CA概率的估计。

方法和结果

该队列由151例基线时传导正常且无起搏器的患者组成,他们在9个欧洲中心接受了TAVI。所使用的器械包括CoreValve、Evolut R、Evolut PRO和Lotus。术前进行了多层计算机断层扫描。通过患者特异性计算机建模与模拟(CM&S)进行虚拟瓣膜植入,从而能够计算瓣膜对解剖结构产生的接触压力。主要复合结局为出院前新发左或右束支传导阻滞或永久起搏器植入(PPI)。应用了一种有监督的ML方法,使用八个基于解剖、手术和机制数据预测CA的模型。59%的患者(n = 89)发生了CA,机械瓣膜后发生CA的情况比第一代或第二代自膨胀瓣膜更常见(68%对60%对41%)。CM&S显示,发生CA的患者接触压力和接触压力指数显著更高。最佳模型的准确率为83%(曲线下面积为0.84),敏感性、特异性、阳性预测值、阴性预测值和F1分数分别为100%、62%、76%、100%和82%。

结论

整合统计和机制建模的ML实现了对TAVI术后CA的准确预测。本研究证明了一种协同方法在个性化手术规划方面的潜力,允许选择最佳器械和植入策略,避免新发CA和/或PPI。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4a57/9708019/6eb6937bc54e/ztab063f6.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验