García-López Míriam, Megias Diego, Ferrándiz María-José, de la Campa Adela G
Unidad de Genética Bacteriana, Centro Nacional de Microbiología, Instituto de Salud Carlos III, Majadahonda, Madrid, Spain.
Unidad de Microscopía Confocal, Instituto de Salud Carlos III, Majadahonda, Madrid, Spain.
Front Microbiol. 2023 Jan 11;13:1094692. doi: 10.3389/fmicb.2022.1094692. eCollection 2022.
Two enzymes are responsible for maintaining supercoiling in the human pathogen , gyrase (GyrAGyrB) and topoisomerase I. To attain diverse levels of topoisomerase I (TopoI, encoded by ), two isogenic strains derived from wild-type strain R6 were constructed: P , carrying an ectopic copy under the control of the ZnSO-regulated P promoter and its derivative ΔP , which carries a deletion at its native chromosomal location. We estimated the number of TopoI and GyrA molecules per cell by using Western-blot and CFUs counting, and correlated these values with supercoiling levels. Supercoiling was estimated in two ways. We used classical 2D-agarose gel electrophoresis of plasmid topoisomers to determine supercoiling density (σ) and we measured compaction of nucleoids using for the first time super-resolution confocal microscopy. Notably, we observed a good correlation between both supercoiling calculations. In R6, with σ = -0.057, the average number of GyrA molecules per cell (2,184) was higher than that of TopoI (1,432), being the GyrA:TopoI proportion of 1:0.65. In ΔP , the number of TopoI molecules depended, as expected, on ZnSO concentration in the culture media, being the proportions of GyrA:TopoI molecules in 75, 150, and 300 μM ZnSO of 1:0.43, 1:0.47, and 1:0.63, respectively, which allowed normal supercoiling and growth. However, in the absence of ZnSO, a higher GyrA:TopoI ratio (1:0.09) caused hyper-supercoiling (σ = -0.086) and lethality. Likewise, growth of ΔP in the absence of ZnSO was restored when gyrase was inhibited with novobiocin, coincidentally with the resolution of hyper-supercoiling (σ change from -0.080 to -0.068). Given that TopoI is a monomer and two molecules of GyrA are present in the gyrase heterotetramer, the gyrase:TopoI enzymes proportion would be 1:1.30 (wild type R6) or of 1:1.26-0.86 (ΔP under viable conditions). Higher proportions, such as 1:0.18 observed in ΔP in the absence of ZnSO yielded to hyper-supercoiling and lethality. These results support a role of the equilibrium between gyrase and TopoI activities in supercoiling maintenance, nucleoid compaction, and viability. Our results shed new light on the mechanism of action of topoisomerase-targeting antibiotics, paving the way for the use of combination therapies.
两种酶负责维持人类病原体中的超螺旋状态,即回旋酶(GyrAGyrB)和拓扑异构酶I。为了获得不同水平的拓扑异构酶I(TopoI,由 编码),构建了源自野生型菌株R6的两个同基因菌株:P ,其在ZnSO调节的P启动子控制下携带一个异位 拷贝,以及其衍生物ΔP ,该衍生物在其天然染色体位置携带一个 缺失。我们通过蛋白质免疫印迹法和菌落形成单位计数来估计每个细胞中TopoI和GyrA分子的数量,并将这些值与超螺旋水平相关联。超螺旋通过两种方式进行估计。我们使用质粒拓扑异构体的经典二维琼脂糖凝胶电泳来确定超螺旋密度(σ),并首次使用超分辨率共聚焦显微镜测量类核的压缩程度。值得注意的是,我们观察到两种超螺旋计算方法之间具有良好的相关性。在R6中,σ = -0.057,每个细胞中GyrA分子的平均数量(2,184个)高于TopoI(1,432个),GyrA与TopoI的比例为1:0.65。在ΔP 中,TopoI分子的数量如预期的那样取决于培养基中ZnSO的浓度,在75、150和300 μM ZnSO中GyrA与TopoI分子的比例分别为1:0.43、1:0.47和1:0.63,这使得能够正常超螺旋和生长。然而,在没有ZnSO的情况下,较高的GyrA与TopoI比例(1:0.09)导致过度超螺旋(σ = -0.086)和致死性。同样,当用新生霉素抑制回旋酶时,ΔP 在没有ZnSO的情况下的生长得以恢复,这与过度超螺旋的消除(σ从-0.080变为-0.068)同时发生。鉴于TopoI是单体,而回旋酶异源四聚体中存在两个GyrA分子,回旋酶与TopoI酶的比例将为1:1.30(野生型R6)或1:1.26 - 0.86(ΔP 在可行条件下)。更高的比例,如在没有ZnSO的情况下ΔP 中观察到的1:0.18,会导致过度超螺旋和致死性。这些结果支持了回旋酶和TopoI活性之间的平衡在超螺旋维持、类核压缩和生存能力方面的作用。我们的结果为靶向拓扑异构酶的抗生素的作用机制提供了新的见解,为联合疗法的应用铺平了道路。