Suppr超能文献

基于机器学习的新诊断多发性骨髓瘤患者感染预测模型

Machine learning-based infection prediction model for newly diagnosed multiple myeloma patients.

作者信息

Peng Ting, Liu Leping, Liu Feiyang, Ding Liang, Liu Jing, Zhou Han, Liu Chong

机构信息

Department of Hematology, The Third Xiangya Hospital of Central South University, Changsha, China.

Department of Pediatrics, The Third Xiangya Hospital of Central South University, Changsha, China.

出版信息

Front Neuroinform. 2023 Jan 13;16:1063610. doi: 10.3389/fninf.2022.1063610. eCollection 2022.

Abstract

OBJECTIVE

To understand the infection characteristics and risk factors for infection by analyzing multicenter clinical data of newly diagnosed multiple myeloma (NDMM) patients.

METHODS

This study reviewed 564 NDMM patients from 2 large tertiary hospitals from January 2018 to December 2021, of whom 395 comprised the training set and 169 comprised the validation set. Thirty-eight variables from first admission records were collected, including patient demographic characteristics, clinical scores and characteristics, laboratory indicators, complications, and medication history, and key variables were screened using the Lasso method. Multiple machine learning algorithms were compared, and the best performing algorithm was used to build a machine learning prediction model. The model performance was evaluated using the AUC, accuracy, and Youden's index. Finally, the SHAP package was used to assess two cases and demonstrate the application of the model.

RESULTS

In this study, 15 important key variables were selected, namely, age, ECOG, osteolytic disruption, VCD, neutrophils, lymphocytes, monocytes, hemoglobin, platelets, albumin, creatinine, lactate dehydrogenase, affected globulin, β2 microglobulin, and preventive medicine. The predictive performance of the XGBoost model was significantly better than that of the other models (AUROC: 0.8664), and it also performed well for the expected dataset (accuracy: 68.64%).

CONCLUSION

A machine learning algorithm was used to establish an infection prediction model for NDMM patients that was simple, convenient, validated, and performed well in reducing the incidence of infection and improving the prognosis of patients.

摘要

目的

通过分析新诊断的多发性骨髓瘤(NDMM)患者的多中心临床数据,了解感染特征及感染危险因素。

方法

本研究回顾性分析了2018年1月至2021年12月来自2家大型三级医院的564例NDMM患者,其中395例组成训练集,169例组成验证集。收集首次入院记录中的38个变量,包括患者人口统计学特征、临床评分及特征、实验室指标、并发症和用药史,并采用Lasso方法筛选关键变量。比较多种机器学习算法,使用性能最佳的算法构建机器学习预测模型。采用AUC、准确率和尤登指数评估模型性能。最后,使用SHAP包评估2例病例并展示模型的应用。

结果

本研究共筛选出15个重要关键变量,即年龄、东部肿瘤协作组(ECOG)体能状态评分、溶骨性破坏、VCD方案、中性粒细胞、淋巴细胞、单核细胞、血红蛋白、血小板、白蛋白、肌酐、乳酸脱氢酶、受累球蛋白、β2微球蛋白和预防用药。XGBoost模型的预测性能显著优于其他模型(曲线下面积:0.8664),对验证数据集的预测效果也较好(准确率:68.64%)。

结论

利用机器学习算法建立了NDMM患者感染预测模型,该模型简单、便捷、经过验证,在降低感染发生率和改善患者预后方面表现良好。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5f9d/9880856/9f8d75b43d45/fninf-16-1063610-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验