Suppr超能文献

基于机器学习预测呼气门控放疗对局部晚期肺癌的给药剂量有效性:几何参数相对于仅剂量学参数的附加价值。

Machine-learning-based prediction of the effectiveness of the delivered dose by exhale-gated radiotherapy for locally advanced lung cancer: The additional value of geometric over dosimetric parameters alone.

作者信息

Guberina Nika, Pöttgen Christoph, Santiago Alina, Levegrün Sabine, Qamhiyeh Sima, Ringbaek Toke Printz, Guberina Maja, Lübcke Wolfgang, Indenkämpen Frank, Stuschke Martin

机构信息

Department of Radiation Therapy, West German Cancer Center, University Hospital Essen, University Duisburg-Essen, Essen, Germany.

German Cancer Consortium (DKTK), Partner Site University Hospital Essen, Essen, Germany.

出版信息

Front Oncol. 2023 Jan 13;12:870432. doi: 10.3389/fonc.2022.870432. eCollection 2022.

Abstract

PURPOSE

This study aimed to assess interfraction stability of the delivered dose distribution by exhale-gated volumetric modulated arc therapy (VMAT) or intensity-modulated arc therapy (IMAT) for lung cancer and to determine dominant prognostic dosimetric and geometric factors.

METHODS

Clinical target volume (CTV) from the planning CT was deformed to the exhale-gated daily CBCT scans to determine CTV, treated by the respective dose fraction. The equivalent uniform dose of the CTV was determined by the power law (EUD) and cell survival model (EUD) as effectiveness measure for the delivered dose distribution. The following prognostic factors were analyzed: (I) minimum dose within the CTV (D), (II) Hausdorff distance (HDD) between CTV and CTV, (III) doses and deformations at the point in CTV at which the global minimum dose over all fractions per patient occurs (PD), and (IV) deformations at the point over all CTV margins per patient with the largest Hausdorff distance (HDPw). Prognostic value and generalizability of the prognostic factors were examined using cross-validated random forest or multilayer perceptron neural network (MLP) classifiers. Dose accumulation was performed using back deformation of the dose distribution from CTV to CTV.

RESULTS

Altogether, 218 dose fractions (10 patients) were evaluated. There was a significant interpatient heterogeneity between the distributions of the normalized EUD values (<0.0001, Kruskal-Wallis tests). Accumulated EUD over all fractions per patient was 1.004-1.023 times of the prescribed dose. Accumulation led to tolerance of ~20% of fractions with EUD 93% of the prescribed dose. Normalized D >60% was associated with predicted EUD values above 95%. D had the highest importance for predicting the EUD over all analyzed prognostic parameters by out-of-bag loss reduction using the random forest procedure. Cross-validated random forest classifier based on D as the sole input had the largest Pearson correlation coefficient (R=0.897) in comparison to classifiers using additional input variables. The neural network performed better than the random forest classifier, and the EUD values predicted by the MLP classifier with D as the sole input were correlated with the EUD values characterized by R=0.933 (95% CI, 0.913-0.948). The performance of the full MLP model with all geometric input parameters was slightly better (R=0.952) than that based on D (=0.0034, Z-test).

CONCLUSION

Accumulated dose distributions over the treatment series were robust against interfraction CTV deformations using exhale gating and online image guidance. D was the most important parameter for EUD prediction for a single fraction. All other parameters did not lead to a markedly improved generalizable prediction. Dosimetric information, especially location and value of D within the CTV , are vital information for image-guided radiation treatment.

摘要

目的

本研究旨在评估呼气门控容积调强弧形放疗(VMAT)或强度调制弧形放疗(IMAT)治疗肺癌时所给予剂量分布的分次间稳定性,并确定主要的预后剂量学和几何因素。

方法

将计划CT中的临床靶区(CTV)变形至呼气门控的每日CBCT扫描图像,以确定各分次治疗时的CTV。通过幂律(EUD)和细胞存活模型(EUD)确定CTV的等效均匀剂量,作为所给予剂量分布的有效性度量。分析了以下预后因素:(I)CTV内的最小剂量(D);(II)CTV与CTV之间的豪斯多夫距离(HDD);(III)每位患者所有分次中全局最小剂量所在CTV点处的剂量和变形(PD);(IV)每位患者所有CTV边界上豪斯多夫距离最大点处的变形(HDPw)。使用交叉验证的随机森林或多层感知器神经网络(MLP)分类器检验预后因素的预后价值和可推广性。通过将剂量分布从CTV反向变形至CTV进行剂量累积。

结果

共评估了218个剂量分次(10例患者)。归一化EUD值分布之间存在显著的患者间异质性(<0.0001,Kruskal-Wallis检验)。每位患者所有分次的累积EUD为处方剂量的1.004 - 1.023倍。累积导致约20%的分次EUD达到处方剂量的93%时仍可耐受。归一化D>60%与预测的EUD值高于95%相关。在所有分析的预后参数中,通过随机森林程序的袋外损失减少法,D对预测EUD的重要性最高。与使用其他输入变量的分类器相比,基于D作为唯一输入的交叉验证随机森林分类器具有最大的皮尔逊相关系数(R = 0.897)。神经网络的表现优于随机森林分类器,以D作为唯一输入的MLP分类器预测的EUD值与特征为R = 0.933(95%CI,0.913 - 0.948)的EUD值相关。包含所有几何输入参数的完整MLP模型的表现(R = 0.952)略优于基于D的模型(= 0.0034,Z检验)。

结论

使用呼气门控和在线图像引导,整个治疗系列的累积剂量分布对分次间CTV变形具有鲁棒性。D是单次分次EUD预测中最重要的参数。所有其他参数并未导致可推广预测有明显改善。剂量学信息,尤其是CTV内D的位置和值,是图像引导放射治疗的关键信息。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d9e9/9880443/2aaf0f9082dd/fonc-12-870432-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验