Suppr超能文献

基于无源域适应的跨平台隐私保护CT图像COVID-19诊断

Cross-platform privacy-preserving CT image COVID-19 diagnosis based on source-free domain adaptation.

作者信息

Feng Yuanyi, Luo Yuemei, Yang Jianfei

机构信息

Kristin School, Auckland, New Zealand.

School of Artificial Intelligence, Nanjing University of Information Science & Technology, China.

出版信息

Knowl Based Syst. 2023 Mar 15;264:110324. doi: 10.1016/j.knosys.2023.110324. Epub 2023 Jan 23.

Abstract

In the wake of the Coronavirus disease (COVID-19) pandemic, chest computed tomography (CT) has become an invaluable component in the rapid and accurate detection of COVID-19. CT scans traditionally require manual inspections from medical professionals, which is expensive and tedious. With advancements in machine learning, deep neural networks have been applied to classify CT scans for efficient diagnosis. However, three challenges hinder this application of deep learning: (1) Domain shift across CT platforms and human subjects impedes the performance of neural networks in different hospitals. (2) Unsupervised Domain Adaptation (UDA), the traditional method to overcome domain shift, typically requires access to both source and target data. This is not realistic in COVID-19 diagnosis due to the sensitivity of medical data. The privacy of patients must be protected. (3) Data imbalance may exist between easy/hard samples and between data classes which can overwhelm the training of deep networks, causing degenerate models. To overcome these challenges, we propose a Cross-Platform Privacy-Preserving COVID-19 diagnosis network (CP Net) that integrates domain adaptation, self-supervised learning, imbalanced label learning, and rotation classifier training into one synergistic framework. We also create a new CT benchmark by combining real-world datasets from multiple medical platforms to facilitate the cross-domain evaluation of our method. Through extensive experiments, we demonstrate that CP Net outperforms many popular UDA methods and achieves state-of-the-art results in diagnosing COVID-19 using CT scans.

摘要

在冠状病毒病(COVID-19)大流行之后,胸部计算机断层扫描(CT)已成为快速准确检测COVID-19的重要组成部分。传统上,CT扫描需要医学专业人员进行人工检查,这既昂贵又繁琐。随着机器学习的进步,深度神经网络已被应用于对CT扫描进行分类以实现高效诊断。然而,有三个挑战阻碍了深度学习的这种应用:(1)CT平台和人类受试者之间的域偏移会影响不同医院中神经网络的性能。(2)无监督域适应(UDA)作为克服域偏移的传统方法,通常需要访问源数据和目标数据。由于医疗数据的敏感性,这在COVID-19诊断中并不现实。患者的隐私必须得到保护。(3)在简单/困难样本之间以及数据类别之间可能存在数据不平衡,这可能会使深度网络的训练不堪重负,导致模型退化。为了克服这些挑战,我们提出了一种跨平台隐私保护COVID-19诊断网络(CP Net),它将域适应、自监督学习、不平衡标签学习和旋转分类器训练集成到一个协同框架中。我们还通过合并来自多个医疗平台的真实世界数据集创建了一个新的CT基准,以促进对我们方法的跨域评估。通过广泛的实验,我们证明CP Net优于许多流行的UDA方法,并在使用CT扫描诊断COVID-19方面取得了领先的成果。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3ca5/9869622/9d7ee0a2050b/gr1_lrg.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验