Suppr超能文献

探索甲状腺结节的过去、现在和未来的研究领域。

Exploring the research landscape of the past, present, and future of thyroid nodules.

作者信息

Chen Pei, Feng Chenzhe, Huang Leyi, Chen Haolin, Feng Yeqian, Chang Shi

机构信息

Department of General Surgery, Xiangya Hospital Central South University, Changsha, Hunan, China.

Department of Mathematics, University of California, Davis, Davis, CA, United States.

出版信息

Front Med (Lausanne). 2023 Jan 12;9:831346. doi: 10.3389/fmed.2022.831346. eCollection 2022.

Abstract

INTRODUCTION

The purpose of this study was to assess the landscape of thyroid nodules research during the last 22 years using machine learning and text analysis.

METHODS

In November 2021, we obtained from PubMed all works indexed under the Medical Subject Headings (MeSH) subject line "thyroid nodules." The entire set of search results was retrieved in XML format, and metadata such as title, abstract, keywords, MeSH words, and year of publication were extracted for bibliometric evaluation from the original XML files. To increase the specificity of the investigation, the Latent Dirichlet allocation (LDA) topic modeling method was applied.

RESULTS

Our study included 5,770 research papers. By using frequency analysis of MeSH terms, research on thyroid nodules was divided into two categories: clinical and basic. The proportion of clinical research is nearing 89% and is dominated by the differential diagnosis of thyroid nodules. In contrast, the proportion of MeSH terms relating to basic research was just 11%, with DNA mutation analysis being the most common topic. Following this, LDA analysis revealed the thyroid nodule study had three clusters: Imaging Studies, Biopsy and Diagnosis, and Epidemiology and Screening of Thyroid Cancer. The result suggests that current thyroid nodule research appears to have focused on ultrasonography and histological diagnosis, which are tightly correlated. Molecular biomarker research has increased, therefore enhancing the diagnostic precision of thyroid nodules. However, inflammation, anxiety, and mental health disorders related to thyroid nodules have received little attention.

CONCLUSION

Basic research on thyroid nodules has unmet research requirements. Future research could focus on developing strategies to more efficiently identify malignant nodules, exploring the mechanism of thyroid nodule development, and enhancing the quality of life of thyroid patients.

摘要

引言

本研究的目的是使用机器学习和文本分析评估过去22年甲状腺结节的研究状况。

方法

2021年11月,我们从PubMed获取了所有在医学主题词(MeSH)主题词“甲状腺结节”下索引的作品。以XML格式检索整个搜索结果集,并从原始XML文件中提取标题、摘要、关键词、MeSH词和出版年份等元数据用于文献计量评估。为了提高调查的特异性,应用了潜在狄利克雷分配(LDA)主题建模方法。

结果

我们的研究包括5770篇研究论文。通过对MeSH术语的频率分析,甲状腺结节的研究分为两类:临床研究和基础研究。临床研究的比例接近89%,主要是甲状腺结节的鉴别诊断。相比之下,与基础研究相关的MeSH术语比例仅为11%,DNA突变分析是最常见的主题。在此之后,LDA分析显示甲状腺结节研究有三个集群:影像学研究、活检与诊断以及甲状腺癌的流行病学与筛查。结果表明,目前甲状腺结节的研究似乎集中在超声检查和组织学诊断上,它们紧密相关。分子生物标志物研究有所增加,从而提高了甲状腺结节的诊断精度。然而,与甲状腺结节相关的炎症、焦虑和心理健康障碍很少受到关注。

结论

甲状腺结节的基础研究存在未满足的研究需求。未来的研究可以集中在制定更有效地识别恶性结节的策略、探索甲状腺结节的发生机制以及提高甲状腺患者的生活质量。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/59c3/9877524/631968a0a67c/fmed-09-831346-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验