文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

Artificial intelligence-enhanced ultrasound imaging for thyroid nodule detection and malignancy classification: a study on YOLOv11.

作者信息

Yang Jiaqi, Luo Zhigang, Wen Yanting, Zhang Jing

机构信息

Operating Room, West China Hospital, Sichuan University/West China School of Nursing, Sichuan University, Chengdu, China.

Glory Wireless Co. Ltd., Chengdu, China.

出版信息

Quant Imaging Med Surg. 2025 Sep 1;15(9):7964-7976. doi: 10.21037/qims-2025-257. Epub 2025 Aug 14.


DOI:10.21037/qims-2025-257
PMID:40893554
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC12397667/
Abstract

BACKGROUND: Thyroid nodules are a common clinical concern, with accurate diagnosis being critical for effective treatment and improved patient outcomes. Traditional ultrasound examinations rely heavily on the physician's experience, which can lead to diagnostic variability. The integration of artificial intelligence (AI) into medical imaging offers a promising solution for enhancing diagnostic accuracy and efficiency. This study aimed to evaluate the effectiveness of the You Only Look Once v. 11 (YOLOv11) model in detecting and classifying thyroid nodules through ultrasound images, with the goal of supporting real-time clinical decision-making and improving diagnostic workflows. METHODS: We used the YOLOv11 model to analyze a dataset of 1,503 thyroid ultrasound images, divided into training (1,203 images), validation (150 images), and test (150 images) sets, comprising 742 benign and 778 malignant nodules. Advanced data augmentation and transfer learning techniques were applied to optimize model performance. Comparative analysis was conducted with other YOLO variants (YOLOv3 to YOLOv10) and residual network 50 (ResNet50) to assess their diagnostic capabilities. RESULTS: The YOLOv11 model exhibited superior performance in thyroid nodule detection as compared to other YOLO variants (from YOLOv3 to YOLOv10) and ResNet50. At an intersection over union (IoU) of 0.5, YOLOv11 achieved a precision (P) of 0.841 and recall (R) of 0.823, outperforming ResNet50's P of 0.8333 and R of 0.8025. Among the YOLO variants, YOLOv11 consistently achieved the highest P and R values. For benign nodules, YOLOv11 obtained a P of 0.835 and R of 0.833, while for malignant nodules, it reached a P of 0.846 and a R of 0.813. Within the YOLOv11 model itself, performance varied across different IoU thresholds (0.25, 0.5, 0.7, and 0.9). Lower IoU thresholds generally resulted in better performance metrics, with P and R values decreasing as the IoU threshold increased. CONCLUSIONS: YOLOv11 proved to be a powerful tool for thyroid nodule detection and malignancy classification, offering high P and real-time performance. These attributes are vital for dynamic ultrasound examinations and enhancing diagnostic efficiency. Future research will focus on expanding datasets and validating the model's clinical utility in real-time settings.

摘要
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ee83/12397667/334aaca2c8f1/qims-15-09-7964-f7.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ee83/12397667/cc79052f3b95/qims-15-09-7964-f1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ee83/12397667/4bf9f396d3d2/qims-15-09-7964-f2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ee83/12397667/97f92b1f5885/qims-15-09-7964-f3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ee83/12397667/11d85978cbfa/qims-15-09-7964-f4.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ee83/12397667/8831a66a9628/qims-15-09-7964-f5.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ee83/12397667/2752f28e5d88/qims-15-09-7964-f6.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ee83/12397667/334aaca2c8f1/qims-15-09-7964-f7.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ee83/12397667/cc79052f3b95/qims-15-09-7964-f1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ee83/12397667/4bf9f396d3d2/qims-15-09-7964-f2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ee83/12397667/97f92b1f5885/qims-15-09-7964-f3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ee83/12397667/11d85978cbfa/qims-15-09-7964-f4.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ee83/12397667/8831a66a9628/qims-15-09-7964-f5.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ee83/12397667/2752f28e5d88/qims-15-09-7964-f6.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ee83/12397667/334aaca2c8f1/qims-15-09-7964-f7.jpg

相似文献

[1]
Artificial intelligence-enhanced ultrasound imaging for thyroid nodule detection and malignancy classification: a study on YOLOv11.

Quant Imaging Med Surg. 2025-9-1

[2]
Prescription of Controlled Substances: Benefits and Risks

2025-1

[3]
A multicenter diagnostic study of thyroid nodule with Hashimoto's thyroiditis enabled by Hashimoto's thyroiditis nodule-artificial intelligence model.

Eur Radiol. 2025-2-13

[4]
Optimizing Thyroid Nodule Management With Artificial Intelligence: Multicenter Retrospective Study on Reducing Unnecessary Fine Needle Aspirations.

JMIR Med Inform. 2025-7-30

[5]
Automated Classification of Dental Caries in Bitewing Radiographs Using Machine Learning and the ICCMS Framework.

Int J Dent. 2025-8-21

[6]
A deep learning approach to direct immunofluorescence pattern recognition in autoimmune bullous diseases.

Br J Dermatol. 2024-7-16

[7]
Artificial intelligence for diagnosing exudative age-related macular degeneration.

Cochrane Database Syst Rev. 2024-10-17

[8]
Improving Breast Cancer Diagnosis in Ultrasound Images Using Deep Learning with Feature Fusion and Attention Mechanism.

Acad Radiol. 2025-5-27

[9]
A YOLOv11-based AI system for keypoint detection of auricular acupuncture points in traditional Chinese medicine.

Front Physiol. 2025-7-10

[10]
Are Artificial Intelligence Models Reliable for Clinical Application in Pediatric Fracture Detection on Radiographs? A Systematic Review and Meta-analysis.

Clin Orthop Relat Res. 2025-8-20

本文引用的文献

[1]
TIRADS-based artificial intelligence systems for ultrasound images of thyroid nodules: protocol for a systematic review.

J Ultrasound. 2025-3

[2]
A narrative review of deep learning in thyroid imaging: current progress and future prospects.

Quant Imaging Med Surg. 2024-2-1

[3]
Comparison of artificial intelligence, elastic imaging, and the thyroid imaging reporting and data system in the differential diagnosis of suspicious nodules.

Quant Imaging Med Surg. 2024-1-3

[4]
[An Improved Object Detection Algorithm for Thyroid Nodule Ultrasound Image Based on Faster R-CNN].

Sichuan Da Xue Xue Bao Yi Xue Ban. 2023-9

[5]
Molecular diagnostics in the evaluation of thyroid nodules: Current use and prospective opportunities.

Front Endocrinol (Lausanne). 2023

[6]
Exploring the research landscape of the past, present, and future of thyroid nodules.

Front Med (Lausanne). 2023-1-12

[7]
The Diagnostic Value of Artificial Intelligence Ultrasound S-Detect Technology for Thyroid Nodules.

Comput Intell Neurosci. 2022

[8]
Identification of benign and malignant thyroid nodules based on dynamic AI ultrasound intelligent auxiliary diagnosis system.

Front Endocrinol (Lausanne). 2022

[9]
2022 European Thyroid Association Guidelines for the management of pediatric thyroid nodules and differentiated thyroid carcinoma.

Eur Thyroid J. 2022-11-29

[10]
Epidemiology of Thyroid Cancer.

Cancer Epidemiol Biomarkers Prev. 2022-7-1

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索