Suppr超能文献

用于甲状腺结节检测和恶性分类的人工智能增强超声成像:关于YOLOv11的研究

Artificial intelligence-enhanced ultrasound imaging for thyroid nodule detection and malignancy classification: a study on YOLOv11.

作者信息

Yang Jiaqi, Luo Zhigang, Wen Yanting, Zhang Jing

机构信息

Operating Room, West China Hospital, Sichuan University/West China School of Nursing, Sichuan University, Chengdu, China.

Glory Wireless Co. Ltd., Chengdu, China.

出版信息

Quant Imaging Med Surg. 2025 Sep 1;15(9):7964-7976. doi: 10.21037/qims-2025-257. Epub 2025 Aug 14.

Abstract

BACKGROUND

Thyroid nodules are a common clinical concern, with accurate diagnosis being critical for effective treatment and improved patient outcomes. Traditional ultrasound examinations rely heavily on the physician's experience, which can lead to diagnostic variability. The integration of artificial intelligence (AI) into medical imaging offers a promising solution for enhancing diagnostic accuracy and efficiency. This study aimed to evaluate the effectiveness of the You Only Look Once v. 11 (YOLOv11) model in detecting and classifying thyroid nodules through ultrasound images, with the goal of supporting real-time clinical decision-making and improving diagnostic workflows.

METHODS

We used the YOLOv11 model to analyze a dataset of 1,503 thyroid ultrasound images, divided into training (1,203 images), validation (150 images), and test (150 images) sets, comprising 742 benign and 778 malignant nodules. Advanced data augmentation and transfer learning techniques were applied to optimize model performance. Comparative analysis was conducted with other YOLO variants (YOLOv3 to YOLOv10) and residual network 50 (ResNet50) to assess their diagnostic capabilities.

RESULTS

The YOLOv11 model exhibited superior performance in thyroid nodule detection as compared to other YOLO variants (from YOLOv3 to YOLOv10) and ResNet50. At an intersection over union (IoU) of 0.5, YOLOv11 achieved a precision (P) of 0.841 and recall (R) of 0.823, outperforming ResNet50's P of 0.8333 and R of 0.8025. Among the YOLO variants, YOLOv11 consistently achieved the highest P and R values. For benign nodules, YOLOv11 obtained a P of 0.835 and R of 0.833, while for malignant nodules, it reached a P of 0.846 and a R of 0.813. Within the YOLOv11 model itself, performance varied across different IoU thresholds (0.25, 0.5, 0.7, and 0.9). Lower IoU thresholds generally resulted in better performance metrics, with P and R values decreasing as the IoU threshold increased.

CONCLUSIONS

YOLOv11 proved to be a powerful tool for thyroid nodule detection and malignancy classification, offering high P and real-time performance. These attributes are vital for dynamic ultrasound examinations and enhancing diagnostic efficiency. Future research will focus on expanding datasets and validating the model's clinical utility in real-time settings.

摘要

背景

甲状腺结节是临床上常见的问题,准确诊断对于有效治疗和改善患者预后至关重要。传统超声检查严重依赖医生的经验,这可能导致诊断的变异性。将人工智能(AI)整合到医学成像中为提高诊断准确性和效率提供了一个有前景的解决方案。本研究旨在评估You Only Look Once v. 11(YOLOv11)模型通过超声图像检测和分类甲状腺结节的有效性,以支持实时临床决策并改善诊断流程。

方法

我们使用YOLOv11模型分析了一个包含1503张甲状腺超声图像的数据集,该数据集分为训练集(1203张图像)、验证集(150张图像)和测试集(150张图像),包括742个良性结节和778个恶性结节。应用了先进的数据增强和迁移学习技术来优化模型性能。与其他YOLO变体(YOLOv3至YOLOv10)和残差网络50(ResNet50)进行了对比分析,以评估它们的诊断能力。

结果

与其他YOLO变体(从YOLOv3到YOLOv10)和ResNet50相比,YOLOv11模型在甲状腺结节检测中表现出卓越的性能。在交并比(IoU)为0.5时,YOLOv11的精度(P)为0.841,召回率(R)为0.823,优于ResNet50的P值0.8333和R值0.8025。在YOLO变体中,YOLOv11始终获得最高的P值和R值。对于良性结节,YOLOv11的P值为0.835,R值为0.833,而对于恶性结节,其P值为0.846,R值为0.813。在YOLOv11模型本身中,不同IoU阈值(0.25、0.5、0.7和0.9)下的性能有所不同。较低的IoU阈值通常会带来更好的性能指标,随着IoU阈值的增加,P值和R值会降低。

结论

YOLOv11被证明是甲状腺结节检测和恶性分类的强大工具,具有高P值和实时性能。这些特性对于动态超声检查和提高诊断效率至关重要。未来的研究将集中在扩大数据集并在实时环境中验证该模型的临床实用性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ee83/12397667/cc79052f3b95/qims-15-09-7964-f1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验