Akrami Haleh, Joshi Anand A, Li Jian, Aydöre Sergül, Leahy Richard M
Signal and Image Processing Institute, University of Southern California, Los Angeles, CA, USA.
Athinoula A. Martinos Center for Biomedical Imaging Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA.
Knowl Based Syst. 2022 Feb 28;238. doi: 10.1016/j.knosys.2021.107886. Epub 2021 Dec 10.
The presence of outliers can severely degrade learned representations and performance of deep learning methods and hence disproportionately affect the training process, leading to incorrect conclusions about the data. For example, anomaly detection using deep generative models is typically only possible when similar anomalies (or outliers) are not present in the training data. Here we focus on variational autoencoders (VAEs). While the VAE is a popular framework for anomaly detection tasks, we observe that the VAE is unable to detect outliers when the training data contains anomalies that have the same distribution as those in test data. In this paper we focus on robustness to outliers in training data in VAE settings using concepts from robust statistics. We propose a variational lower bound that leads to a robust VAE model that has the same computational complexity as the standard VAE and contains a single automatically-adjusted tuning parameter to control the degree of robustness. We present mathematical formulations for robust variational autoencoders (RVAEs) for Bernoulli, Gaussian and categorical variables. The RVAE model is based on beta-divergence rather than the standard Kullback-Leibler (KL) divergence. We demonstrate the performance of our proposed -divergence-based autoencoder for a variety of image and categorical datasets showing improved robustness to outliers both qualitatively and quantitatively. We also illustrate the use of our robust VAE for detection of lesions in brain images, formulated as an anomaly detection task. Finally, we suggest a method to tune the hyperparameter of RVAE which makes our model completely unsupervised.
异常值的存在会严重降低深度学习方法所学习到的表示和性能,从而对训练过程产生不成比例的影响,导致对数据得出错误结论。例如,使用深度生成模型进行异常检测通常只有在训练数据中不存在类似异常(或异常值)时才有可能。在这里,我们关注变分自编码器(VAE)。虽然VAE是用于异常检测任务的流行框架,但我们观察到,当训练数据包含与测试数据中分布相同的异常时,VAE无法检测到异常值。在本文中,我们使用稳健统计的概念,关注VAE设置中训练数据对异常值的鲁棒性。我们提出了一个变分下界,它能导出一个稳健的VAE模型,该模型具有与标准VAE相同的计算复杂度,并且包含一个自动调整的调谐参数来控制稳健程度。我们给出了针对伯努利、高斯和分类变量的稳健变分自编码器(RVAE)的数学公式。RVAE模型基于β散度而非标准的库尔贝克-莱布勒(KL)散度。我们展示了我们提出的基于散度的自编码器在各种图像和分类数据集上的性能,在定性和定量方面都显示出对异常值的鲁棒性有所提高。我们还说明了我们的稳健VAE在将脑图像中的病变检测制定为异常检测任务时的应用。最后,我们提出了一种调整RVAE超参数的方法,使我们的模型完全无监督。