Suppr超能文献

基于磁共振成像标志物预测创伤后癫痫。

Prediction of Post Traumatic Epilepsy Using MR-Based Imaging Markers.

机构信息

Department of Electrical and Computer Engineering, University of Southern California, Los Angeles, California, USA.

Department of Radiology, University of Southern California, Los Angeles, California, USA.

出版信息

Hum Brain Mapp. 2024 Dec 1;45(17):e70075. doi: 10.1002/hbm.70075.

Abstract

Post-traumatic epilepsy (PTE) is a debilitating neurological disorder that develops after traumatic brain injury (TBI). Despite the high prevalence of PTE, current methods for predicting its occurrence remain limited. In this study, we aimed to identify imaging-based markers for the prediction of PTE using machine learning. Specifically, we examined three imaging features: Lesion volumes, resting-state fMRI-based measures of functional connectivity, and amplitude of low-frequency fluctuation (ALFF). We employed three machine-learning methods, namely, kernel support vector machine (KSVM), random forest, and an artificial neural network (NN), to develop predictive models. Our results showed that the KSVM classifier, with all three feature types as input, achieved the best prediction accuracy of 0.78 AUC (area under the receiver operating characteristic (ROC) curve) using nested cross-validation. Furthermore, we performed voxel-wise and lobe-wise group difference analyses to investigate the specific brain regions and features that the model found to be most helpful in distinguishing PTE from non-PTE populations. Our statistical analysis uncovered significant differences in bilateral temporal lobes and cerebellum between PTE and non-PTE groups. Overall, our findings demonstrate the complementary prognostic value of MR-based markers in PTE prediction and provide new insights into the underlying structural and functional alterations associated with PTE.

摘要

创伤后癫痫(PTE)是一种在脑外伤(TBI)后发展的使人衰弱的神经疾病。尽管 PTE 的发病率很高,但目前预测其发生的方法仍然有限。在这项研究中,我们旨在使用机器学习来确定基于影像学的 PTE 预测标志物。具体来说,我们检查了三种影像学特征:病灶体积、基于静息态 fMRI 的功能连接测量和低频振幅(ALFF)。我们采用了三种机器学习方法,即核支持向量机(KSVM)、随机森林和人工神经网络(NN),来开发预测模型。我们的结果表明,KSVM 分类器,使用所有三种特征类型作为输入,使用嵌套交叉验证达到了最佳的预测准确性,AUC(接收器操作特征曲线下的面积)为 0.78。此外,我们进行了体素和叶位组差异分析,以研究模型发现有助于区分 PTE 和非 PTE 人群的特定脑区和特征。我们的统计分析揭示了 PTE 和非 PTE 组之间双侧颞叶和小脑之间的显著差异。总的来说,我们的研究结果表明基于 MRI 的标志物在 PTE 预测中的互补预后价值,并为与 PTE 相关的结构和功能改变提供了新的见解。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3a2a/11574740/48a88d96f1c5/HBM-45-e70075-g005.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验