Suppr超能文献

基于规范先验的图像恢复的无监督病灶检测。

Unsupervised lesion detection via image restoration with a normative prior.

机构信息

Computer Vision Laboratory, ETH Zürich, Sternwartstrasse 7, Zürich, 8092, Switzerland.

ARTORG Center for Biomedical Engineering Research, University of Bern, Murtenstrasse 50, Bern, 3008, Switzerland.

出版信息

Med Image Anal. 2020 Aug;64:101713. doi: 10.1016/j.media.2020.101713. Epub 2020 May 1.

Abstract

Unsupervised lesion detection is a challenging problem that requires accurately estimating normative distributions of healthy anatomy and detecting lesions as outliers without training examples. Recently, this problem has received increased attention from the research community following the advances in unsupervised learning with deep learning. Such advances allow the estimation of high-dimensional distributions, such as normative distributions, with higher accuracy than previous methods. The main approach of the recently proposed methods is to learn a latent-variable model parameterized with networks to approximate the normative distribution using example images showing healthy anatomy, perform prior-projection, i.e. reconstruct the image with lesions using the latent-variable model, and determine lesions based on the differences between the reconstructed and original images. While being promising, the prior-projection step often leads to a large number of false positives. In this work, we approach unsupervised lesion detection as an image restoration problem and propose a probabilistic model that uses a network-based prior as the normative distribution and detect lesions pixel-wise using MAP estimation. The probabilistic model punishes large deviations between restored and original images, reducing false positives in pixel-wise detections. Experiments with gliomas and stroke lesions in brain MRI using publicly available datasets show that the proposed approach outperforms the state-of-the-art unsupervised methods by a substantial margin, +0.13 (AUC), for both glioma and stroke detection. Extensive model analysis confirms the effectiveness of MAP-based image restoration.

摘要

无监督病灶检测是一个具有挑战性的问题,需要在没有训练示例的情况下准确估计正常解剖结构的正态分布,并将病灶检测为异常值。最近,随着深度学习中非监督学习的进展,该问题受到了研究界的更多关注。这些进展使得可以比以前的方法更准确地估计高维分布,例如正态分布。最近提出的方法的主要方法是学习具有网络参数化的潜在变量模型,使用显示正常解剖结构的示例图像来近似正态分布,进行先验预测,即使用潜在变量模型用病灶重建图像,并根据重建图像和原始图像之间的差异来确定病灶。虽然很有前途,但先验预测步骤通常会导致大量的假阳性。在这项工作中,我们将无监督病灶检测视为图像恢复问题,并提出了一种概率模型,该模型使用基于网络的先验作为正态分布,并使用 MAP 估计逐像素检测病灶。概率模型惩罚恢复图像和原始图像之间的大偏差,从而减少逐像素检测中的假阳性。使用公共数据集在脑 MRI 中的脑胶质瘤和中风病灶上进行的实验表明,所提出的方法在脑胶质瘤和中风检测方面均比最先进的无监督方法有显著的优势,分别提高了 0.13(AUC)。广泛的模型分析证实了基于 MAP 的图像恢复的有效性。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验