Ji Shyam, Gavande Parmeshwar Vitthal, Choudhury Bipasha, Goyal Arun
Carbohydrate Enzyme Biotechnology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam 781039 India.
3 Biotech. 2023 Feb;13(2):59. doi: 10.1007/s13205-023-03482-6. Epub 2023 Jan 25.
Development of chimeric enzymes by protein engineering can more efficiently contribute toward biomass conversion for bioenergy generation. Therefore, prior to experimental validation, a computational approach by modeling and molecular dynamic simulation can assess the structural and functional behavior of chimeric enzymes. In this study, a bifunctional chimera, Xyn11A-GH43A comprising an efficient endoxylanase (Xyn11A) from and xylosidase (GH43A) from was computationally designed and its binding and stability analysis with xylooligosaccharides were performed. The modeled chimera showed β-jellyroll fold for Xyn11A and 5-bladed β-propeller fold for GH43A module. Stereo-chemical properties analyzed by Ramachandran plot showed 98.8% residues in allowed region, validating the modeled chimera. The catalytic residues identified by multiple sequence alignment were Glu94 and Glu184 for Xyn11A and Asp229 and Glu384 for GH43A modules. Xyn11A followed retaining-type, whereas GH43A enforced inverting-type of reaction mechanism during xylan hydrolysis as revealed by superposition and GH11 and GH43 familial analyses. Molecular docking studies showed binding energy, (ΔG) - 4.54 and - 4.18 kcal/mol for Xyn11A and GH43A modules of chimera, respectively, with xylobiose, while - 3.94 and - 3.82 kcal/mol for Xyn11A and GH43A modules of chimera, respectively, with xylotriose. MD simulation of Xyn11A-GH43A complexed with xylobiose and xylotriose till 100 ns displayed stability by RMSD, compactness by and conformational stability by SASA analyses. The lowered values of RMSF in active-site residues, Glu94, Glu184, Asp229, Asp335 and Glu384 confirmed the efficient binding of chimera with xylobiose and xylotriose. These results were in agreement with the earlier experimental studies on Xyn11A releasing xylooligosaccharides from xylan and GH43A releasing d-xylose from xylooligosaccharides and xylobiose. The chimera showed stronger affinity in terms of total short-range interaction energy; - 190 and - 121 kJ/mol for with xylobiose and xylotriose, respectively. The bifunctional chimera, Xyn11A-GH43A showed stability and integrity with xylobiose and xylotriose. The designed chimera can be constructed and applied for efficient biomass conversion.
通过蛋白质工程开发嵌合酶可以更有效地促进生物质转化以用于生物能源生产。因此,在进行实验验证之前,通过建模和分子动力学模拟的计算方法可以评估嵌合酶的结构和功能行为。在本研究中,通过计算设计了一种双功能嵌合体Xyn11A-GH43A,其包含来自[具体来源1]的高效内切木聚糖酶(Xyn11A)和来自[具体来源2]的木糖苷酶(GH43A),并对其与木寡糖的结合和稳定性进行了分析。建模的嵌合体显示Xyn11A具有β-果冻卷折叠,GH43A模块具有五叶β-螺旋桨折叠。通过拉氏图分析的立体化学性质显示98.8%的残基位于允许区域,验证了建模的嵌合体。通过多序列比对鉴定的催化残基,Xyn11A为Glu94和Glu184,GH43A模块为Asp229和Glu384。如通过叠加以及GH11和GH43家族分析所揭示的,Xyn11A遵循保留型,而GH43A在木聚糖水解过程中采用转化型反应机制。分子对接研究表明,嵌合体的Xyn11A和GH43A模块与木二糖的结合能(ΔG)分别为-4.54和-4.18 kcal/mol,而与木三糖的结合能分别为-3.94和-3.82 kcal/mol。Xyn11A-GH43A与木二糖和木三糖复合直至100 ns的分子动力学模拟通过均方根偏差(RMSD)分析显示出稳定性,通过[具体指标2]分析显示出紧密性,通过溶剂可及表面积(SASA)分析显示出构象稳定性。活性位点残基Glu94、Glu184、Asp229、Asp335和Glu384的均方根波动(RMSF)值降低,证实了嵌合体与木二糖和木三糖的有效结合。这些结果与早期关于Xyn11A从木聚糖释放木寡糖以及GH43A从木寡糖和木二糖释放D-木糖的实验研究一致。就总短程相互作用能量而言,嵌合体显示出更强的亲和力;与木二糖和木三糖的相互作用能量分别为-190和-121 kJ/mol。双功能嵌合体Xyn11A-GH43A与木二糖和木三糖显示出稳定性和完整性。设计的嵌合体可以构建并应用于高效的生物质转化。