Suppr超能文献

结合局部方差预处理和注意力机制的密集连接网络杂草识别模型

DenseNet weed recognition model combining local variance preprocessing and attention mechanism.

作者信息

Mu Ye, Ni Ruiwen, Fu Lili, Luo Tianye, Feng Ruilong, Li Ji, Pan Haohong, Wang Yingkai, Sun Yu, Gong He, Guo Ying, Hu Tianli, Bao Yu, Li Shijun

机构信息

College of Information Technology, Jilin Agricultural University, Changchun, China.

Jilin Province Agricultural Internet of Things Technology Collaborative Innovation Center, Jilin Agricultural University, Changchun, Jilin, China.

出版信息

Front Plant Sci. 2023 Jan 12;13:1041510. doi: 10.3389/fpls.2022.1041510. eCollection 2022.

Abstract

INTRODUCTION

The purpose of this paper is to effectively and accurately identify weed species in crop fields in complex environments. There are many kinds of weeds in the detection area, which are densely distributed.

METHODS

The paper proposes the use of local variance pre-processing method for background segmentation and data enhancement, which effectively removes the complex background and redundant information from the data, and prevents the experiment from overfitting, which can improve the accuracy rate significantly. Then, based on the optimization improvement of DenseNet network, Efficient Channel Attention (ECA) mechanism is introduced after the convolutional layer to increase the weight of important features, strengthen the weed features and suppress the background features.

RESULTS

Using the processed images to train the model, the accuracy rate reaches 97.98%, which is a great improvement, and the comprehensive performance is higher than that of DenseNet, VGGNet-16, VGGNet-19, ResNet-50, DANet, DNANet, and U-Net models.

DISCUSSION

The experimental data show that the model and method we designed are well suited to solve the problem of accurate identification of crop and weed species in complex environments, laying a solid technical foundation for the development of intelligent weeding robots.

摘要

引言

本文旨在有效且准确地识别复杂环境下农田中的杂草种类。检测区域内杂草种类繁多,分布密集。

方法

本文提出使用局部方差预处理方法进行背景分割和数据增强,有效去除数据中的复杂背景和冗余信息,防止实验出现过拟合,显著提高准确率。然后,在DenseNet网络优化改进的基础上,在卷积层之后引入高效通道注意力(ECA)机制,增加重要特征的权重,强化杂草特征并抑制背景特征。

结果

使用处理后的图像训练模型,准确率达到97.98%,有很大提升,综合性能高于DenseNet、VGGNet - 16、VGGNet - 19、ResNet - 50、DANet、DNANet和U - Net模型。

讨论

实验数据表明,我们设计的模型和方法非常适合解决复杂环境下农作物和杂草种类的准确识别问题,为智能除草机器人的发展奠定了坚实的技术基础。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/737d/9877626/6fbd5e641a50/fpls-13-1041510-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验