Crevecoeur Sophie, Prairie Yves T, Del Giorgio Paul A
Département des Sciences Biologiques, Groupe de Recherche Interuniversitaire en Limnologie et en Environnement Aquatique (GRIL), Université du Québec à Montréal, Montréal, QC H2×1Y4, Canada.
PNAS Nexus. 2022 Aug 26;1(4):pgac171. doi: 10.1093/pnasnexus/pgac171. eCollection 2022 Sep.
Bacterial community structure can change rapidly across short spatial and temporal scales as environmental conditions vary, but the mechanisms underlying those changes are still poorly understood. Here, we assessed how a lake microbial community assembles by following its reorganization from the main tributary, which, when flowing into the lake, first traverses an extensive macrophyte-dominated vegetated habitat, before reaching the open water. Environmental conditions in the vegetated habitat changed drastically compared to both river and lake waters and represented a strong environmental gradient for the incoming bacteria. We used amplicon sequencing of the 16S rRNA gene and transcript to reconstruct the shifts in relative abundance of individual taxa and link this to their pattern in activity (here assessed with RNA:DNA ratios). Our results indicate that major shifts in relative abundance were restricted mostly to rare taxa (<0.1% of relative abundance), which seemed more responsive to environmental changes. Dominant taxa (>1% of relative abundance), on the other hand, traversed the gradient mostly unchanged with relatively low and stable RNA:DNA ratios. We also identified a high level of local recruitment and a seedbank of taxa capable of activating/inactivating, but these were almost exclusively associated with the rare biosphere. Our results suggest a scenario where the lake community results from a reshuffling of the rank abundance structure within the incoming rare biosphere, driven by selection and growth, and that numerical dominance is not a synonym of activity, growth rate, or environmental selection, but rather reflect mass effects structuring these freshwater bacterial communities.
随着环境条件的变化,细菌群落结构可在较短的空间和时间尺度上迅速改变,但其背后的机制仍知之甚少。在这里,我们通过追踪湖泊微生物群落从主要支流开始的重组过程,评估了其组装方式。该支流流入湖泊时,首先穿过一个以大型植物为主的广泛植被栖息地,然后才到达开阔水域。与河水和湖水相比,植被栖息地的环境条件发生了巨大变化,对流入的细菌来说代表了一个强烈的环境梯度。我们使用16S rRNA基因和转录本的扩增子测序来重建各个分类单元相对丰度的变化,并将其与它们的活性模式(此处用RNA:DNA比率评估)联系起来。我们的结果表明,相对丰度的主要变化大多局限于稀有分类单元(相对丰度<0.1%),它们似乎对环境变化更敏感。另一方面,优势分类单元(相对丰度>1%)在梯度中大多保持不变,RNA:DNA比率相对较低且稳定。我们还发现了高水平的本地招募和一个能够激活/失活的分类单元种子库,但这些几乎都与稀有生物圈相关。我们的结果表明了一种情况,即湖泊群落是由流入的稀有生物圈内等级丰度结构的重新排列产生的,由选择和生长驱动,并且数量上的优势并非活性、生长速率或环境选择的同义词,而是反映了构建这些淡水细菌群落的质量效应。