Synchrotron-light for Experimental Science and Applications in the Middle East (SESAME), P.O. Box 7, Allan19252, Jordan.
Department of Fundamental Chemistry, Institute of Chemistry, University of São Paulo (USP), 05508-000São Paulo, SP, Brazil.
Inorg Chem. 2023 Feb 13;62(6):2738-2750. doi: 10.1021/acs.inorgchem.2c03850. Epub 2023 Jan 30.
Rare earth(III) β-diketonates are highly remarkable luminophores in the visible spectral region among the rare earth compounds, owing to the efficient contribution from the 4f-4f intraconfigurational transitions. To get detailed structural insight into the RE sites (RE = Eu, Gd, and Sm), X-ray absorption near-edge spectroscopy (XANES) can be very potent in probing the local chemical environment around the RE ion. In this work, a PyFitIt machine learning approach was employed as a new strategy to simulate the Eu, Gd, and Sm L-edge XANES and thereby determine the local atomic structure of the luminescence RE β-diketonate complexes, [Eu(tta)(HO)], [Cmim][Eu(dbm)], [Gd(tta)(HO)], and [Sm(dbm)(phen)] (tta, 3-thenoyltrifluoroacetonate; dbm, dibenzoylmethane; phen, phenanthroline; and Cmim, 1-butyl-3-methylimidazolium bromide). Continuous Cauchy wavelet transform validated the PyFitIt calculated XANES by visualizing very efficiently the coordination geometries, composed of O and O/N backscatterers around the RE (RE = Eu and Gd) and Sm ions, respectively, as a pinkish-red color map in the two-dimensional images of the corresponding complexes. Extended X-ray absorption fine structure fit in Artemis also corroborated the three-dimensional structures generated by PyFitIt XANES simulation for all the compounds. Though, relatively slightly higher bond distance values for the Sm complex are due to the higher atomic radius of the Sm ion when compared to the Eu and Gd complexes. Meanwhile, higher Debye-Waller factor (σ) values for the [Cmim][Eu(dbm)] when compared to the [Eu(tta)(HO)] indicated the structure disorder, owing to the distortion in the local geometry. It is noteworthy that the optical properties, described mainly by the Ω (λ = 2 and 4) 4f-4f intensity parameters, are very sensitive to the local coordination environment around the Eu ion. Thus, a close agreement between the experimental and theoretically calculated Ω parameter values confirmed that the PyFitIt calculated square antiprismatic structures are precisely similar to the real structures of the Eu complexes.
稀土(III)β-二酮配合物在稀土化合物中是可见光区域内非常显著的发光体,这归因于 4f-4f 内组态跃迁的有效贡献。为了深入了解 RE 位点的结构(RE = Eu、Gd 和 Sm),X 射线吸收近边光谱(XANES)可以非常有效地探测 RE 离子周围的局部化学环境。在这项工作中,采用了 PyFitIt 机器学习方法作为一种新策略来模拟 Eu、Gd 和 Sm L 边 XANES,从而确定发光 RE β-二酮配合物的局部原子结构,[Eu(tta)(HO)]、[Cmim][Eu(dbm)]、[Gd(tta)(HO)]和[Sm(dbm)(phen)](tta,3-三氟乙酰丙酮;dbm,二苯甲酰甲烷;phen,邻菲咯啉;和 Cmim,1-丁基-3-甲基咪唑溴盐)。连续的 Cauchy 小波变换通过有效地可视化配位几何结构验证了 PyFitIt 计算的 XANES,该配位几何结构由 O 和 O/N 背散射器组成,分别围绕着 Eu 和 Gd 以及 Sm 离子,在相应配合物的二维图像中呈现出粉红色红色的色图。Artemis 中的扩展 X 射线吸收精细结构拟合也证实了 PyFitIt XANES 模拟生成的所有化合物的三维结构。尽管如此,由于 Sm 离子的原子半径比 Eu 和 Gd 配合物的原子半径大,Sm 配合物的键距离值相对略高。同时,与[Eu(tta)(HO)]相比,[Cmim][Eu(dbm)]的德拜-沃勒因子(σ)值较高,表明由于局部几何形状的扭曲导致结构无序。值得注意的是,光学性质主要由 Ω(λ=2 和 4)4f-4f 强度参数描述,对 Eu 离子周围的局部配位环境非常敏感。因此,实验和理论计算的 Ω 参数值之间的密切一致性证实了 PyFitIt 计算的正方形反棱柱体结构与 Eu 配合物的真实结构非常相似。