Suppr超能文献

肌球蛋白 II 取向的几何控制在轴伸长过程中。

Geometric control of myosin II orientation during axis elongation.

机构信息

Department of Physics, University of California, Santa Barbara, Santa Barbara, United States.

Kavli Institute for Theoretical Physics, University of California, Santa Barbara, Santa Barbara, United States.

出版信息

Elife. 2023 Jan 30;12:e78787. doi: 10.7554/eLife.78787.

Abstract

The actomyosin cytoskeleton is a crucial driver of morphogenesis. Yet how the behavior of large-scale cytoskeletal patterns in deforming tissues emerges from the interplay of geometry, genetics, and mechanics remains incompletely understood. Convergent extension in embryos provides the opportunity to establish a quantitative understanding of the dynamics of anisotropic non-muscle myosin II. Cell-scale analysis of protein localization in fixed embryos suggests that gene expression patterns govern myosin anisotropy via complex rules. However, technical limitations have impeded quantitative and dynamic studies of this process at the whole embryo level, leaving the role of geometry open. Here, we combine in toto live imaging with quantitative analysis of molecular dynamics to characterize the distribution of myosin anisotropy and the corresponding genetic patterning. We found pair rule gene expression continuously deformed, flowing with the tissue frame. In contrast, myosin anisotropy orientation remained approximately static and was only weakly deflected from the stationary dorsal-ventral axis of the embryo. We propose that myosin is recruited by a geometrically defined static source, potentially related to the embryo-scale epithelial tension, and account for transient deflections by cytoskeletal turnover and junction reorientation by flow. With only one parameter, this model quantitatively accounts for the time course of myosin anisotropy orientation in wild-type, , and embryos, as well as embryos with perturbed egg geometry. Geometric patterning of the cytoskeleton suggests a simple physical strategy to ensure a robust flow and formation of shape.

摘要

肌动球蛋白细胞骨架是形态发生的关键驱动因素。然而,从几何形状、遗传学和力学的相互作用中,大规模细胞骨架模式在变形组织中的行为是如何产生的,这仍然不完全清楚。胚胎中的会聚延伸为建立对各向异性非肌肉肌球蛋白 II 动力学的定量理解提供了机会。在固定胚胎中对蛋白质定位的细胞尺度分析表明,基因表达模式通过复杂的规则控制肌球蛋白各向异性。然而,技术限制阻碍了在整个胚胎水平上对该过程的定量和动态研究,使得几何形状的作用仍然未知。在这里,我们将整体活成像与分子动力学的定量分析相结合,以表征肌球蛋白各向异性的分布和相应的遗传模式。我们发现,成对规则基因表达不断变形,与组织框架一起流动。相比之下,肌球蛋白各向异性方向保持大致静态,并且仅从胚胎的固定背-腹轴轻微偏离。我们提出肌球蛋白是由几何形状定义的静态源招募的,这可能与胚胎尺度上皮张力有关,并通过细胞骨架周转和连接重新定向来解释瞬态偏转而产生。该模型只需要一个参数,就可以定量地解释野生型、 和 胚胎以及具有扰动卵几何形状的胚胎中肌球蛋白各向异性方向的时间过程。细胞骨架的几何图案表明了一种简单的物理策略,可以确保稳健的流动和形状形成。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/feb5/9940909/7d2b712a77a7/elife-78787-fig1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验