Suppr超能文献

扩散峰度成像纹理分析鉴别鼻腔鼻窦良恶性病变:对常规成像特征的附加价值。

Texture analysis of diffusion kurtosis imaging for differentiating malignant from benign sinonasal lesions: added value to conventional imaging features.

机构信息

Department of Radiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China.

Department of Otorhinolaryngology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China.

出版信息

Br J Radiol. 2023 Mar 1;96(1144):20220806. doi: 10.1259/bjr.20220806. Epub 2023 Feb 13.

Abstract

OBJECTIVES

To evaluate the performance of texture analysis (TA) of diffusion kurtosis imaging (DKI) in differentiating malignant from benign sinonasal lesions, and its added value to the conventional imaging features.

METHODS

Fifty-eight patients with malignant and 40 patients with benign sinonasal lesions were retrospectively enrolled. Conventional CT and MRI features were reviewed. Texture parameters were obtained and compared between two groups. Multivariate logistic regression analysis was used to identify the most valuable variables. Receiver operating characteristic curves were performed to assess the differentiating performance of independent variables and their combination.

RESULTS

There were significant differences in tumor necrosis, bone erosion and soft tissue invasion between the two groups (all < 0.05). There were significant differences in the 10th and entropy of Apparent diffusion coefficient map, the mean, 10th and entropy of D map, the mean and 90th of K map between the two groups (all < 0.002). The bone erosion, entropy of D, and mean of K were independent variables associated with malignant tumors. Receiver operating characteristic analyses indicated that the combination of three features possessed better differentiating performance than bone erosion alone ( = 0.003).

CONCLUSION

TA of DKI could supply incremental value to conventional imaging features for pre-operative differential diagnosis between benign and malignant sinonasal lesions.

ADVANCES IN KNOWLEDGE

The present study is the first to combine conventional imaging features and the TA of DKI in the differential diagnosis between benign and malignant sinonasal lesions. Our findings suggest that TA of DKI could supply incremental value to conventional imaging features.

摘要

目的

评估扩散峰度成像(DKI)纹理分析(TA)在区分良恶性鼻窦病变中的性能,及其对常规影像学特征的附加价值。

方法

回顾性纳入 58 例恶性和 40 例良性鼻窦病变患者。回顾性分析常规 CT 和 MRI 特征。在两组之间获得纹理参数并进行比较。采用多变量逻辑回归分析确定最有价值的变量。绘制受试者工作特征曲线评估独立变量及其组合的区分性能。

结果

两组之间肿瘤坏死、骨侵蚀和软组织侵犯存在显著差异(均<0.05)。表观扩散系数图的 10 百分位数和熵、D 图的均值、10 百分位数和熵、K 图的均值和 90 百分位数之间存在显著差异(均<0.002)。骨侵蚀、D 熵和 K 均值是与恶性肿瘤相关的独立变量。受试者工作特征分析表明,三种特征的组合比单独骨侵蚀具有更好的区分性能(=0.003)。

结论

DKI 的 TA 可以为术前良恶性鼻窦病变的鉴别诊断提供常规影像学特征的附加价值。

知识进展

本研究首次将常规影像学特征与 DKI 的 TA 相结合,用于鉴别诊断良性和恶性鼻窦病变。我们的研究结果表明,DKI 的 TA 可以为常规影像学特征提供附加价值。

相似文献

本文引用的文献

1
Surgical Management of Sinonasal Cancers: A Comprehensive Review.鼻窦癌的手术治疗:综述
Cancers (Basel). 2021 Aug 8;13(16):3995. doi: 10.3390/cancers13163995.
7
Sinonasal Neoplasms.鼻窦肿瘤
Semin Roentgenol. 2019 Jul;54(3):244-257. doi: 10.1053/j.ro.2019.03.001. Epub 2019 Mar 9.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验