Laboratoire Génome et Développement des Plantes, Université Perpignan Via Domitia, F-66860 Perpignan, France.
Laboratoire Génome et Développement des Plantes, CNRS, F-66860 Perpignan, France.
J Exp Bot. 2023 Apr 18;74(8):2707-2725. doi: 10.1093/jxb/erad042.
In the context of climate change, the global rise of temperature and intense heat waves affect plant development and productivity. Among the molecular perturbations that high temperature induces in living cells is the accumulation of reactive oxygen species (ROS), which perturbs the cellular redox state. In plants, the dynamics of the cellular and subcellular redox state have been poorly investigated under high temperature. Glutathione plays a major role in maintaining the cellular redox state. We investigated its contribution in adaptation of Arabidopsis thaliana to contrasting high temperature regimes: high ambient temperature inducing thermomorphogenesis and heat stress affecting plant viability. Using the genetically encoded redox marker roGFP2, we show that high temperature regimes lead to cytoplasmic and nuclear oxidation and impact the glutathione pool. This pool is restored within a few hours, which probably contributes to plant adaptation to high temperatures. Moreover, low glutathione mutants fail to adapt to heat stress and to induce thermomorphogenesis, suggesting that glutathione is involved in both heat adaptation mechanisms. We also evaluate the transcriptomic signature in the two high temperature regimes and identified gene expression deviations in low glutathione mutants, which might contribute to their sensitivity to high temperature. Thus, we define glutathione as a major player in the adaptation of Arabidopsis to contrasting high temperature regimes.
在气候变化的背景下,全球气温上升和强烈的热浪影响了植物的发育和生产力。在高温诱导的活细胞分子扰动中,有活性氧物质 (ROS) 的积累,这扰乱了细胞的氧化还原状态。在植物中,高温下细胞和亚细胞氧化还原状态的动态变化还没有得到很好的研究。谷胱甘肽在维持细胞氧化还原状态方面起着重要作用。我们研究了它在拟南芥适应不同高温条件中的贡献:环境温度升高诱导热形态发生,热胁迫影响植物的生存能力。使用遗传编码的氧化还原标记 roGFP2,我们表明高温条件导致细胞质和核氧化,并影响谷胱甘肽池。这个池在几个小时内得到恢复,这可能有助于植物适应高温。此外,谷胱甘肽含量低的突变体不能适应热胁迫和诱导热形态发生,表明谷胱甘肽参与了这两种耐热机制。我们还评估了在两种高温条件下的转录组特征,并在谷胱甘肽含量低的突变体中鉴定了基因表达的偏差,这可能导致它们对高温敏感。因此,我们将谷胱甘肽定义为拟南芥适应不同高温条件的主要参与者。