Department of Chemistry and Biochemistry, Montclair State University, 1 Normal Avenue, Montclair, New Jersey 07043, United States.
Department of Chemistry, Purdue University, 560 Oval Drive, West Lafayette, Indiana 47907, United States.
Anal Chem. 2023 Feb 7;95(5):2932-2941. doi: 10.1021/acs.analchem.2c04649. Epub 2023 Jan 30.
Inspired by the electron-activated dissociation technique, the most potent tool for glycan characterization, we recently developed free radical reagents for glycan structural elucidation. However, the underlying mechanisms of free radical-induced glycan dissociation remain unclear and, therefore, hinder the rational optimization of the free radical reagents and the interpretation of tandem mass spectra, especially the accurate assignment of the relatively low-abundant but information-rich ions. In this work, we selectively incorporate the C and/or O isotopes into cellobiose to study the mechanisms for free radical-induced dissociation of glycans. The eight isotope-labeled cellobioses include 1-C, 3-C, 1'-C, 2'-C, 3'-C, 4'-C, 5'-C, and 1'-C-4-O-cellobioses. Upon one-step collisional activation, cross-ring (X ions), glycosidic bond (Y-, Z-, and B-related ions), and combinational (Y + X ion) cleavages are generated. These fragment ions can be unambiguously assigned and confirmed by the mass difference of isotope labeling. Importantly, the relatively low-abundant but information-rich ions, such as X + H, X + H, X + H-OH, Y + X, X-H, X-H, X-H, X-H, and B-3H, are confidently assigned. The mechanisms for the formations of these ions are investigated and supported by quantum chemical calculations. These ions are generally initiated by hydrogen abstraction followed by sequential β-elimination and/or radical migration. Here, the mechanistic study for free radical-induced glycan dissociation allows us to interpret all of the free radical-induced fragment ions accurately and, therefore, enables the differentiation of stereochemical isomers. Moreover, it provides fundamental knowledge for the subsequent development of bioinformatics tools to interpret the complex free radical-induced glycan spectra.
受电子激活解离技术(最强大的聚糖结构分析工具)的启发,我们最近开发了用于聚糖结构解析的自由基试剂。然而,自由基诱导聚糖解离的潜在机制仍不清楚,因此阻碍了自由基试剂的合理优化以及串联质谱的解释,尤其是相对低丰度但信息丰富的离子的准确归属。在这项工作中,我们选择性地将 C 和/或 O 同位素掺入纤维二糖中,以研究自由基诱导聚糖解离的机制。这八种同位素标记的纤维二糖包括 1-C、3-C、1'-C、2'-C、3'-C、4'-C、5'-C 和 1'-C-4-O-纤维二糖。经过一步碰撞激活,会产生跨环(X 离子)、糖苷键(Y-、Z-和 B-相关离子)和组合(Y + X 离子)裂解。这些片段离子可以通过同位素标记的质量差来明确归属和确认。重要的是,相对低丰度但信息丰富的离子,如 X + H、X + H、X + H-OH、Y + X、X-H、X-H、X-H、X-H 和 B-3H,也得到了准确的归属。通过量子化学计算对这些离子的形成机制进行了研究和验证。这些离子通常由氢原子提取引发,随后是顺序β-消除和/或自由基迁移。在此,自由基诱导聚糖解离的机制研究使我们能够准确解释所有自由基诱导的片段离子,从而能够区分立体异构体。此外,它为随后开发用于解释复杂自由基诱导聚糖谱的生物信息学工具提供了基础知识。