School of Molecular Biosciences & Neuroscience, Washington State University , Pullman, WA, USA.
Department of Integrative Physiology & Neuroscience, Washington State University , Pullman, WA, USA.
J Gen Physiol. 2023 Apr 3;155(4). doi: 10.1085/jgp.202213250. Epub 2023 Jan 30.
Hypertrophic cardiomyopathy (HCM) is the leading genetic cause of heart disease. The heart comprises several proteins that work together to properly facilitate force production and pump blood throughout the body. Cardiac myosin binding protein-C (cMyBP-C) is a thick-filament protein, and mutations in cMyBP-C are frequently linked with clinical cases of HCM. Within the sarcomere, the N-terminus of cMyBP-C likely interacts with the myosin regulatory light chain (RLC); RLC is a subunit of myosin located within the myosin neck region that modulates contractile dynamics via its phosphorylation state. Phosphorylation of RLC is thought to influence myosin head position along the thick-filament backbone, making it more favorable to bind the thin filament of actin and facilitate force production. However, little is known about how these two proteins interact. We tested the effects of RLC phosphorylation on Ca2+-regulated contractility using biomechanical assays on skinned papillary muscle strips isolated from cMyBP-C KO mice and WT mice. RLC phosphorylation increased Ca2+ sensitivity of contraction (i.e., pCa50) from 5.80 ± 0.02 to 5.95 ± 0.03 in WT strips, whereas RLC phosphorylation increased Ca2+ sensitivity of contraction from 5.86 ± 0.02 to 6.15 ± 0.03 in cMyBP-C KO strips. These data suggest that the effects of RLC phosphorylation on Ca2+ sensitivity of contraction are amplified when cMyBP-C is absent from the sarcomere. This implies that cMyBP-C and RLC act in concert to regulate contractility in healthy hearts, and mutations to these proteins that lead to HCM (or a loss of phosphorylation with disease progression) may disrupt important interactions between these thick-filament regulatory proteins.
肥厚型心肌病(HCM)是心脏疾病的主要遗传原因。心脏由几种协同工作的蛋白质组成,以正确促进力的产生和将血液泵送到全身。肌球蛋白结合蛋白-C(cMyBP-C)是一种粗丝蛋白,cMyBP-C 的突变常与 HCM 的临床病例相关。在肌节内,cMyBP-C 的 N 端可能与肌球蛋白调节轻链(RLC)相互作用;RLC 是肌球蛋白中的一个亚基,位于肌球蛋白颈部区域,通过其磷酸化状态调节收缩动力学。RLC 的磷酸化被认为会影响肌球蛋白头部在粗丝骨架上的位置,使其更有利于与肌动蛋白的细丝结合并促进力的产生。然而,人们对这两种蛋白质如何相互作用知之甚少。我们使用从 cMyBP-C KO 小鼠和 WT 小鼠分离的去皮乳头肌条的生物力学测定来测试 RLC 磷酸化对 Ca2+调节的收缩的影响。RLC 磷酸化增加了 WT 条带收缩的 Ca2+敏感性(即 pCa50),从 5.80±0.02 增加到 5.95±0.03,而 RLC 磷酸化增加了 cMyBP-C KO 条带收缩的 Ca2+敏感性,从 5.86±0.02 增加到 6.15±0.03。这些数据表明,当肌节中不存在 cMyBP-C 时,RLC 磷酸化对收缩 Ca2+敏感性的影响会放大。这意味着 cMyBP-C 和 RLC 协同作用以调节健康心脏的收缩性,而导致 HCM(或随着疾病进展而丧失磷酸化)的这些蛋白质的突变可能会破坏这些粗丝调节蛋白之间的重要相互作用。