Suppr超能文献

多层光流控技术在可持续建筑中的应用。

Multilayered optofluidics for sustainable buildings.

机构信息

Department of Materials Science and Engineering, University of Toronto, Toronto, ON M5S 3E4, Canada.

Department of Mechanical and Industrial Engineering, University of Toronto, Toronto, ON M5S 3G8, Canada.

出版信息

Proc Natl Acad Sci U S A. 2023 Feb 7;120(6):e2210351120. doi: 10.1073/pnas.2210351120. Epub 2023 Jan 30.

Abstract

Indoor climate control is among the most energy-intensive activities conducted by humans. A building facade that can achieve versatile climate control directly, through independent and multifunctional optical reconfigurations, could significantly reduce this energy footprint, and its development represents a pertinent unmet challenge toward global sustainability. Drawing from optically adaptive multilayer skins within biological organisms, we report a multilayered millifluidic interface for achieving a comprehensive suite of independent optical responses in buildings. We digitally control the flow of aqueous solutions within confined milliscale channels, demonstrating independent command over total transmitted light intensity (95% modulation between 250 and 2,500 nm), near-infrared-selective absorption (70% modulation between 740 and 2,500 nm), and dispersion (scattering). This combinatorial optical tunability enables configurable optimization of the amount, wavelength, and position of transmitted solar radiation within buildings over time, resulting in annual modeled energy reductions of more than 43% over existing technologies. Our scalable "optofluidic" platform, leveraging a versatile range of aqueous chemistries, may represent a general solution for the climate control of buildings.

摘要

室内气候控制是人类进行的最耗能的活动之一。如果建筑立面能够直接通过独立的多功能光学重新配置来实现多样化的气候控制,那么这将大大减少能源足迹,其发展代表了全球可持续性方面一个尚未得到满足的重大挑战。我们从生物有机体中的光适应多层皮肤中汲取灵感,报告了一种多层微流控界面,用于在建筑物中实现全面的独立光学响应。我们通过在受限的毫升级通道内控制水溶液的流动,实现了对总透射光强(在 250nm 至 2500nm 之间实现 95%的调制)、近红外选择性吸收(在 740nm 至 2500nm 之间实现 70%的调制)和色散(散射)的独立控制。这种组合光学可调性能够在建筑物内随时间对传输太阳辐射的数量、波长和位置进行可配置的优化,从而使建模后的年度能源节省超过 43%,优于现有技术。我们的可扩展“光电液体”平台利用了多种水溶液化学物质,可能是建筑物气候控制的通用解决方案。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/311f/9963926/8f9564ca1e9d/pnas.2210351120fig01.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验