Suppr超能文献

结构程序化毛细流事件的微流控链反应。

Microfluidic chain reaction of structurally programmed capillary flow events.

机构信息

Biomedical Engineering Department, McGill University, Montreal, Quebec, Canada.

McGill Genome Centre, McGill University, Montreal, Quebec, Canada.

出版信息

Nature. 2022 May;605(7910):464-469. doi: 10.1038/s41586-022-04683-4. Epub 2022 May 18.

Abstract

Chain reactions, characterized by initiation, propagation and termination, are stochastic at microscopic scales and underlie vital chemical (for example, combustion engines), nuclear and biotechnological (for example, polymerase chain reaction) applications. At macroscopic scales, chain reactions are deterministic and limited to applications for entertainment and art such as falling dominoes and Rube Goldberg machines. On the other hand, the microfluidic lab-on-a-chip (also called a micro-total analysis system) was visualized as an integrated chip, akin to microelectronic integrated circuits, yet in practice remains dependent on cumbersome peripherals, connections and a computer for automation. Capillary microfluidics integrate energy supply and flow control onto a single chip by using capillary phenomena, but programmability remains rudimentary with at most a handful (eight) operations possible. Here we introduce the microfluidic chain reaction (MCR) as the conditional, structurally programmed propagation of capillary flow events. Monolithic chips integrating a MCR are three-dimensionally printed, and powered by the free energy of a paper pump, autonomously execute liquid handling algorithms step-by-step. With MCR, we automated (1) the sequential release of 300 aliquots across chained, interconnected chips, (2) a protocol for severe acute respiratory syndrome-coronavirus-2 (SARS-CoV-2) antibodies detection in saliva and (3) a thrombin generation assay by continuous subsampling and analysis of coagulation-activated plasma with parallel operations including timers, iterative cycles of synchronous flow and stop-flow operations. MCRs are untethered from and unencumbered by peripherals, encode programs structurally in situ and can form a frugal, versatile, bona fide lab-on-a-chip with wide-ranging applications in liquid handling and point-of-care diagnostics.

摘要

链式反应的特点是引发、传播和终止,在微观尺度上是随机的,是重要的化学(例如,内燃机)、核和生物技术(例如,聚合酶链反应)应用的基础。在宏观尺度上,链式反应是确定性的,仅限于娱乐和艺术应用,例如倒下的多米诺骨牌和鲁布·戈德堡机器。另一方面,微流控芯片实验室(也称为微全分析系统)被设想为一种集成芯片,类似于微电子集成电路,但实际上仍然依赖于繁琐的外围设备、连接和计算机来实现自动化。毛细微流控通过利用毛细现象将能量供应和流量控制集成到单个芯片上,但可编程性仍然很基础,最多只能进行少数(八个)操作。在这里,我们介绍了微流控链式反应(MCR),它是毛细流动事件有条件的、结构上可编程的传播。集成 MCR 的单片芯片通过三维打印,由纸泵的自由能供电,自主地逐步执行液体处理算法。通过 MCR,我们自动化了(1)在连锁、互联的芯片上顺序释放 300 个等分试样,(2)唾液中严重急性呼吸综合征冠状病毒 2(SARS-CoV-2)抗体检测的协议,以及(3)通过连续亚采样和分析凝血激活血浆的凝血酶生成测定,同时包括计时器、同步流动和停止流动操作的迭代循环。MCR 无需外部设备,也不受其限制,在现场结构上对程序进行编码,可以形成一个节俭、通用、真正的微流控芯片,在液体处理和即时诊断方面具有广泛的应用。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验